1 | // Copyright 2011 the V8 project authors. All rights reserved. |
2 | // Use of this source code is governed by a BSD-style license that can be |
3 | // found in the LICENSE file. |
4 | |
5 | #ifndef V8_V8MEMORY_H_ |
6 | #define V8_V8MEMORY_H_ |
7 | |
8 | #include "src/globals.h" |
9 | |
10 | namespace v8 { |
11 | namespace internal { |
12 | |
13 | // Memory provides an interface to 'raw' memory. It encapsulates the casts |
14 | // that typically are needed when incompatible pointer types are used. |
15 | // Note that this class currently relies on undefined behaviour. There is a |
16 | // proposal (http://wg21.link/p0593r2) to make it defined behaviour though. |
17 | template <class T> |
18 | T& Memory(Address addr) { |
19 | // {addr} must be aligned. |
20 | DCHECK_EQ(0, addr & (alignof(T) - 1)); |
21 | return *reinterpret_cast<T*>(addr); |
22 | } |
23 | template <class T> |
24 | T& Memory(byte* addr) { |
25 | return Memory<T>(reinterpret_cast<Address>(addr)); |
26 | } |
27 | |
28 | template <typename V> |
29 | static inline V ReadUnalignedValue(Address p) { |
30 | ASSERT_TRIVIALLY_COPYABLE(V); |
31 | V r; |
32 | memcpy(&r, reinterpret_cast<void*>(p), sizeof(V)); |
33 | return r; |
34 | } |
35 | |
36 | template <typename V> |
37 | static inline void WriteUnalignedValue(Address p, V value) { |
38 | ASSERT_TRIVIALLY_COPYABLE(V); |
39 | memcpy(reinterpret_cast<void*>(p), &value, sizeof(V)); |
40 | } |
41 | |
42 | static inline double ReadFloatValue(Address p) { |
43 | return ReadUnalignedValue<float>(p); |
44 | } |
45 | |
46 | static inline double ReadDoubleValue(Address p) { |
47 | return ReadUnalignedValue<double>(p); |
48 | } |
49 | |
50 | static inline void WriteDoubleValue(Address p, double value) { |
51 | WriteUnalignedValue(p, value); |
52 | } |
53 | |
54 | static inline uint16_t ReadUnalignedUInt16(Address p) { |
55 | return ReadUnalignedValue<uint16_t>(p); |
56 | } |
57 | |
58 | static inline void WriteUnalignedUInt16(Address p, uint16_t value) { |
59 | WriteUnalignedValue(p, value); |
60 | } |
61 | |
62 | static inline uint32_t ReadUnalignedUInt32(Address p) { |
63 | return ReadUnalignedValue<uint32_t>(p); |
64 | } |
65 | |
66 | static inline void WriteUnalignedUInt32(Address p, uint32_t value) { |
67 | WriteUnalignedValue(p, value); |
68 | } |
69 | |
70 | template <typename V> |
71 | static inline V ReadLittleEndianValue(Address p) { |
72 | #if defined(V8_TARGET_LITTLE_ENDIAN) |
73 | return ReadUnalignedValue<V>(p); |
74 | #elif defined(V8_TARGET_BIG_ENDIAN) |
75 | V ret{}; |
76 | const byte* src = reinterpret_cast<const byte*>(p); |
77 | byte* dst = reinterpret_cast<byte*>(&ret); |
78 | for (size_t i = 0; i < sizeof(V); i++) { |
79 | dst[i] = src[sizeof(V) - i - 1]; |
80 | } |
81 | return ret; |
82 | #endif // V8_TARGET_LITTLE_ENDIAN |
83 | } |
84 | |
85 | template <typename V> |
86 | static inline void WriteLittleEndianValue(Address p, V value) { |
87 | #if defined(V8_TARGET_LITTLE_ENDIAN) |
88 | WriteUnalignedValue<V>(p, value); |
89 | #elif defined(V8_TARGET_BIG_ENDIAN) |
90 | byte* src = reinterpret_cast<byte*>(&value); |
91 | byte* dst = reinterpret_cast<byte*>(p); |
92 | for (size_t i = 0; i < sizeof(V); i++) { |
93 | dst[i] = src[sizeof(V) - i - 1]; |
94 | } |
95 | #endif // V8_TARGET_LITTLE_ENDIAN |
96 | } |
97 | |
98 | template <typename V> |
99 | static inline V ReadLittleEndianValue(V* p) { |
100 | return ReadLittleEndianValue<V>(reinterpret_cast<Address>(p)); |
101 | } |
102 | |
103 | template <typename V> |
104 | static inline void WriteLittleEndianValue(V* p, V value) { |
105 | WriteLittleEndianValue<V>(reinterpret_cast<Address>(p), value); |
106 | } |
107 | |
108 | } // namespace internal |
109 | } // namespace v8 |
110 | |
111 | #endif // V8_V8MEMORY_H_ |
112 | |