1 | // Copyright 2012 the V8 project authors. All rights reserved. |
2 | // Use of this source code is governed by a BSD-style license that can be |
3 | // found in the LICENSE file. |
4 | |
5 | #include "src/strtod.h" |
6 | |
7 | #include <stdarg.h> |
8 | #include <cmath> |
9 | |
10 | #include "src/bignum.h" |
11 | #include "src/cached-powers.h" |
12 | #include "src/double.h" |
13 | #include "src/globals.h" |
14 | #include "src/utils.h" |
15 | |
16 | namespace v8 { |
17 | namespace internal { |
18 | |
19 | // 2^53 = 9007199254740992. |
20 | // Any integer with at most 15 decimal digits will hence fit into a double |
21 | // (which has a 53bit significand) without loss of precision. |
22 | static const int kMaxExactDoubleIntegerDecimalDigits = 15; |
23 | // 2^64 = 18446744073709551616 > 10^19 |
24 | static const int kMaxUint64DecimalDigits = 19; |
25 | |
26 | // Max double: 1.7976931348623157 x 10^308 |
27 | // Min non-zero double: 4.9406564584124654 x 10^-324 |
28 | // Any x >= 10^309 is interpreted as +infinity. |
29 | // Any x <= 10^-324 is interpreted as 0. |
30 | // Note that 2.5e-324 (despite being smaller than the min double) will be read |
31 | // as non-zero (equal to the min non-zero double). |
32 | static const int kMaxDecimalPower = 309; |
33 | static const int kMinDecimalPower = -324; |
34 | |
35 | // 2^64 = 18446744073709551616 |
36 | static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF); |
37 | |
38 | // clang-format off |
39 | static const double exact_powers_of_ten[] = { |
40 | 1.0, // 10^0 |
41 | 10.0, |
42 | 100.0, |
43 | 1000.0, |
44 | 10000.0, |
45 | 100000.0, |
46 | 1000000.0, |
47 | 10000000.0, |
48 | 100000000.0, |
49 | 1000000000.0, |
50 | 10000000000.0, // 10^10 |
51 | 100000000000.0, |
52 | 1000000000000.0, |
53 | 10000000000000.0, |
54 | 100000000000000.0, |
55 | 1000000000000000.0, |
56 | 10000000000000000.0, |
57 | 100000000000000000.0, |
58 | 1000000000000000000.0, |
59 | 10000000000000000000.0, |
60 | 100000000000000000000.0, // 10^20 |
61 | 1000000000000000000000.0, |
62 | // 10^22 = 0x21E19E0C9BAB2400000 = 0x878678326EAC9 * 2^22 |
63 | 10000000000000000000000.0 |
64 | }; |
65 | // clang-format on |
66 | static const int kExactPowersOfTenSize = arraysize(exact_powers_of_ten); |
67 | |
68 | // Maximum number of significant digits in the decimal representation. |
69 | // In fact the value is 772 (see conversions.cc), but to give us some margin |
70 | // we round up to 780. |
71 | static const int kMaxSignificantDecimalDigits = 780; |
72 | |
73 | static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { |
74 | for (int i = 0; i < buffer.length(); i++) { |
75 | if (buffer[i] != '0') { |
76 | return buffer.SubVector(i, buffer.length()); |
77 | } |
78 | } |
79 | return Vector<const char>(buffer.start(), 0); |
80 | } |
81 | |
82 | |
83 | static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { |
84 | for (int i = buffer.length() - 1; i >= 0; --i) { |
85 | if (buffer[i] != '0') { |
86 | return buffer.SubVector(0, i + 1); |
87 | } |
88 | } |
89 | return Vector<const char>(buffer.start(), 0); |
90 | } |
91 | |
92 | |
93 | static void TrimToMaxSignificantDigits(Vector<const char> buffer, |
94 | int exponent, |
95 | char* significant_buffer, |
96 | int* significant_exponent) { |
97 | for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { |
98 | significant_buffer[i] = buffer[i]; |
99 | } |
100 | // The input buffer has been trimmed. Therefore the last digit must be |
101 | // different from '0'. |
102 | DCHECK_NE(buffer[buffer.length() - 1], '0'); |
103 | // Set the last digit to be non-zero. This is sufficient to guarantee |
104 | // correct rounding. |
105 | significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; |
106 | *significant_exponent = |
107 | exponent + (buffer.length() - kMaxSignificantDecimalDigits); |
108 | } |
109 | |
110 | |
111 | // Reads digits from the buffer and converts them to a uint64. |
112 | // Reads in as many digits as fit into a uint64. |
113 | // When the string starts with "1844674407370955161" no further digit is read. |
114 | // Since 2^64 = 18446744073709551616 it would still be possible read another |
115 | // digit if it was less or equal than 6, but this would complicate the code. |
116 | static uint64_t ReadUint64(Vector<const char> buffer, |
117 | int* number_of_read_digits) { |
118 | uint64_t result = 0; |
119 | int i = 0; |
120 | while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { |
121 | int digit = buffer[i++] - '0'; |
122 | DCHECK(0 <= digit && digit <= 9); |
123 | result = 10 * result + digit; |
124 | } |
125 | *number_of_read_digits = i; |
126 | return result; |
127 | } |
128 | |
129 | |
130 | // Reads a DiyFp from the buffer. |
131 | // The returned DiyFp is not necessarily normalized. |
132 | // If remaining_decimals is zero then the returned DiyFp is accurate. |
133 | // Otherwise it has been rounded and has error of at most 1/2 ulp. |
134 | static void ReadDiyFp(Vector<const char> buffer, |
135 | DiyFp* result, |
136 | int* remaining_decimals) { |
137 | int read_digits; |
138 | uint64_t significand = ReadUint64(buffer, &read_digits); |
139 | if (buffer.length() == read_digits) { |
140 | *result = DiyFp(significand, 0); |
141 | *remaining_decimals = 0; |
142 | } else { |
143 | // Round the significand. |
144 | if (buffer[read_digits] >= '5') { |
145 | significand++; |
146 | } |
147 | // Compute the binary exponent. |
148 | int exponent = 0; |
149 | *result = DiyFp(significand, exponent); |
150 | *remaining_decimals = buffer.length() - read_digits; |
151 | } |
152 | } |
153 | |
154 | |
155 | static bool DoubleStrtod(Vector<const char> trimmed, |
156 | int exponent, |
157 | double* result) { |
158 | #if (V8_TARGET_ARCH_IA32 || defined(USE_SIMULATOR)) && !defined(_MSC_VER) |
159 | // On x86 the floating-point stack can be 64 or 80 bits wide. If it is |
160 | // 80 bits wide (as is the case on Linux) then double-rounding occurs and the |
161 | // result is not accurate. |
162 | // We know that Windows32 with MSVC, unlike with MinGW32, uses 64 bits and is |
163 | // therefore accurate. |
164 | // Note that the ARM and MIPS simulators are compiled for 32bits. They |
165 | // therefore exhibit the same problem. |
166 | USE(exact_powers_of_ten); |
167 | USE(kMaxExactDoubleIntegerDecimalDigits); |
168 | USE(kExactPowersOfTenSize); |
169 | return false; |
170 | #else |
171 | if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { |
172 | int read_digits; |
173 | // The trimmed input fits into a double. |
174 | // If the 10^exponent (resp. 10^-exponent) fits into a double too then we |
175 | // can compute the result-double simply by multiplying (resp. dividing) the |
176 | // two numbers. |
177 | // This is possible because IEEE guarantees that floating-point operations |
178 | // return the best possible approximation. |
179 | if (exponent < 0 && -exponent < kExactPowersOfTenSize) { |
180 | // 10^-exponent fits into a double. |
181 | *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
182 | DCHECK(read_digits == trimmed.length()); |
183 | *result /= exact_powers_of_ten[-exponent]; |
184 | return true; |
185 | } |
186 | if (0 <= exponent && exponent < kExactPowersOfTenSize) { |
187 | // 10^exponent fits into a double. |
188 | *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
189 | DCHECK(read_digits == trimmed.length()); |
190 | *result *= exact_powers_of_ten[exponent]; |
191 | return true; |
192 | } |
193 | int remaining_digits = |
194 | kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); |
195 | if ((0 <= exponent) && |
196 | (exponent - remaining_digits < kExactPowersOfTenSize)) { |
197 | // The trimmed string was short and we can multiply it with |
198 | // 10^remaining_digits. As a result the remaining exponent now fits |
199 | // into a double too. |
200 | *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
201 | DCHECK(read_digits == trimmed.length()); |
202 | *result *= exact_powers_of_ten[remaining_digits]; |
203 | *result *= exact_powers_of_ten[exponent - remaining_digits]; |
204 | return true; |
205 | } |
206 | } |
207 | return false; |
208 | #endif |
209 | } |
210 | |
211 | |
212 | // Returns 10^exponent as an exact DiyFp. |
213 | // The given exponent must be in the range [1; kDecimalExponentDistance[. |
214 | static DiyFp AdjustmentPowerOfTen(int exponent) { |
215 | DCHECK_LT(0, exponent); |
216 | DCHECK_LT(exponent, PowersOfTenCache::kDecimalExponentDistance); |
217 | // Simply hardcode the remaining powers for the given decimal exponent |
218 | // distance. |
219 | DCHECK_EQ(PowersOfTenCache::kDecimalExponentDistance, 8); |
220 | switch (exponent) { |
221 | case 1: |
222 | return DiyFp(V8_2PART_UINT64_C(0xA0000000, 00000000), -60); |
223 | case 2: |
224 | return DiyFp(V8_2PART_UINT64_C(0xC8000000, 00000000), -57); |
225 | case 3: |
226 | return DiyFp(V8_2PART_UINT64_C(0xFA000000, 00000000), -54); |
227 | case 4: |
228 | return DiyFp(V8_2PART_UINT64_C(0x9C400000, 00000000), -50); |
229 | case 5: |
230 | return DiyFp(V8_2PART_UINT64_C(0xC3500000, 00000000), -47); |
231 | case 6: |
232 | return DiyFp(V8_2PART_UINT64_C(0xF4240000, 00000000), -44); |
233 | case 7: |
234 | return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40); |
235 | default: |
236 | UNREACHABLE(); |
237 | } |
238 | } |
239 | |
240 | |
241 | // If the function returns true then the result is the correct double. |
242 | // Otherwise it is either the correct double or the double that is just below |
243 | // the correct double. |
244 | static bool DiyFpStrtod(Vector<const char> buffer, |
245 | int exponent, |
246 | double* result) { |
247 | DiyFp input; |
248 | int remaining_decimals; |
249 | ReadDiyFp(buffer, &input, &remaining_decimals); |
250 | // Since we may have dropped some digits the input is not accurate. |
251 | // If remaining_decimals is different than 0 than the error is at most |
252 | // .5 ulp (unit in the last place). |
253 | // We don't want to deal with fractions and therefore keep a common |
254 | // denominator. |
255 | const int kDenominatorLog = 3; |
256 | const int kDenominator = 1 << kDenominatorLog; |
257 | // Move the remaining decimals into the exponent. |
258 | exponent += remaining_decimals; |
259 | int64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2); |
260 | |
261 | int old_e = input.e(); |
262 | input.Normalize(); |
263 | error <<= old_e - input.e(); |
264 | |
265 | DCHECK_LE(exponent, PowersOfTenCache::kMaxDecimalExponent); |
266 | if (exponent < PowersOfTenCache::kMinDecimalExponent) { |
267 | *result = 0.0; |
268 | return true; |
269 | } |
270 | DiyFp cached_power; |
271 | int cached_decimal_exponent; |
272 | PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, |
273 | &cached_power, |
274 | &cached_decimal_exponent); |
275 | |
276 | if (cached_decimal_exponent != exponent) { |
277 | int adjustment_exponent = exponent - cached_decimal_exponent; |
278 | DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); |
279 | input.Multiply(adjustment_power); |
280 | if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { |
281 | // The product of input with the adjustment power fits into a 64 bit |
282 | // integer. |
283 | DCHECK_EQ(DiyFp::kSignificandSize, 64); |
284 | } else { |
285 | // The adjustment power is exact. There is hence only an error of 0.5. |
286 | error += kDenominator / 2; |
287 | } |
288 | } |
289 | |
290 | input.Multiply(cached_power); |
291 | // The error introduced by a multiplication of a*b equals |
292 | // error_a + error_b + error_a*error_b/2^64 + 0.5 |
293 | // Substituting a with 'input' and b with 'cached_power' we have |
294 | // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp), |
295 | // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 |
296 | int error_b = kDenominator / 2; |
297 | int error_ab = (error == 0 ? 0 : 1); // We round up to 1. |
298 | int fixed_error = kDenominator / 2; |
299 | error += error_b + error_ab + fixed_error; |
300 | |
301 | old_e = input.e(); |
302 | input.Normalize(); |
303 | error <<= old_e - input.e(); |
304 | |
305 | // See if the double's significand changes if we add/subtract the error. |
306 | int order_of_magnitude = DiyFp::kSignificandSize + input.e(); |
307 | int effective_significand_size = |
308 | Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); |
309 | int precision_digits_count = |
310 | DiyFp::kSignificandSize - effective_significand_size; |
311 | if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { |
312 | // This can only happen for very small denormals. In this case the |
313 | // half-way multiplied by the denominator exceeds the range of an uint64. |
314 | // Simply shift everything to the right. |
315 | int shift_amount = (precision_digits_count + kDenominatorLog) - |
316 | DiyFp::kSignificandSize + 1; |
317 | input.set_f(input.f() >> shift_amount); |
318 | input.set_e(input.e() + shift_amount); |
319 | // We add 1 for the lost precision of error, and kDenominator for |
320 | // the lost precision of input.f(). |
321 | error = (error >> shift_amount) + 1 + kDenominator; |
322 | precision_digits_count -= shift_amount; |
323 | } |
324 | // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. |
325 | DCHECK_EQ(DiyFp::kSignificandSize, 64); |
326 | DCHECK_LT(precision_digits_count, 64); |
327 | uint64_t one64 = 1; |
328 | uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; |
329 | uint64_t precision_bits = input.f() & precision_bits_mask; |
330 | uint64_t half_way = one64 << (precision_digits_count - 1); |
331 | precision_bits *= kDenominator; |
332 | half_way *= kDenominator; |
333 | DiyFp rounded_input(input.f() >> precision_digits_count, |
334 | input.e() + precision_digits_count); |
335 | if (precision_bits >= half_way + error) { |
336 | rounded_input.set_f(rounded_input.f() + 1); |
337 | } |
338 | // If the last_bits are too close to the half-way case than we are too |
339 | // inaccurate and round down. In this case we return false so that we can |
340 | // fall back to a more precise algorithm. |
341 | |
342 | *result = Double(rounded_input).value(); |
343 | if (half_way - error < precision_bits && precision_bits < half_way + error) { |
344 | // Too imprecise. The caller will have to fall back to a slower version. |
345 | // However the returned number is guaranteed to be either the correct |
346 | // double, or the next-lower double. |
347 | return false; |
348 | } else { |
349 | return true; |
350 | } |
351 | } |
352 | |
353 | |
354 | // Returns the correct double for the buffer*10^exponent. |
355 | // The variable guess should be a close guess that is either the correct double |
356 | // or its lower neighbor (the nearest double less than the correct one). |
357 | // Preconditions: |
358 | // buffer.length() + exponent <= kMaxDecimalPower + 1 |
359 | // buffer.length() + exponent > kMinDecimalPower |
360 | // buffer.length() <= kMaxDecimalSignificantDigits |
361 | static double BignumStrtod(Vector<const char> buffer, |
362 | int exponent, |
363 | double guess) { |
364 | if (guess == V8_INFINITY) { |
365 | return guess; |
366 | } |
367 | |
368 | DiyFp upper_boundary = Double(guess).UpperBoundary(); |
369 | |
370 | DCHECK(buffer.length() + exponent <= kMaxDecimalPower + 1); |
371 | DCHECK_GT(buffer.length() + exponent, kMinDecimalPower); |
372 | DCHECK_LE(buffer.length(), kMaxSignificantDecimalDigits); |
373 | // Make sure that the Bignum will be able to hold all our numbers. |
374 | // Our Bignum implementation has a separate field for exponents. Shifts will |
375 | // consume at most one bigit (< 64 bits). |
376 | // ln(10) == 3.3219... |
377 | DCHECK_LT((kMaxDecimalPower + 1) * 333 / 100, Bignum::kMaxSignificantBits); |
378 | Bignum input; |
379 | Bignum boundary; |
380 | input.AssignDecimalString(buffer); |
381 | boundary.AssignUInt64(upper_boundary.f()); |
382 | if (exponent >= 0) { |
383 | input.MultiplyByPowerOfTen(exponent); |
384 | } else { |
385 | boundary.MultiplyByPowerOfTen(-exponent); |
386 | } |
387 | if (upper_boundary.e() > 0) { |
388 | boundary.ShiftLeft(upper_boundary.e()); |
389 | } else { |
390 | input.ShiftLeft(-upper_boundary.e()); |
391 | } |
392 | int comparison = Bignum::Compare(input, boundary); |
393 | if (comparison < 0) { |
394 | return guess; |
395 | } else if (comparison > 0) { |
396 | return Double(guess).NextDouble(); |
397 | } else if ((Double(guess).Significand() & 1) == 0) { |
398 | // Round towards even. |
399 | return guess; |
400 | } else { |
401 | return Double(guess).NextDouble(); |
402 | } |
403 | } |
404 | |
405 | |
406 | double Strtod(Vector<const char> buffer, int exponent) { |
407 | Vector<const char> left_trimmed = TrimLeadingZeros(buffer); |
408 | Vector<const char> trimmed = TrimTrailingZeros(left_trimmed); |
409 | exponent += left_trimmed.length() - trimmed.length(); |
410 | if (trimmed.length() == 0) return 0.0; |
411 | if (trimmed.length() > kMaxSignificantDecimalDigits) { |
412 | char significant_buffer[kMaxSignificantDecimalDigits]; |
413 | int significant_exponent; |
414 | TrimToMaxSignificantDigits(trimmed, exponent, |
415 | significant_buffer, &significant_exponent); |
416 | return Strtod(Vector<const char>(significant_buffer, |
417 | kMaxSignificantDecimalDigits), |
418 | significant_exponent); |
419 | } |
420 | if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY; |
421 | if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0; |
422 | |
423 | double guess; |
424 | if (DoubleStrtod(trimmed, exponent, &guess) || |
425 | DiyFpStrtod(trimmed, exponent, &guess)) { |
426 | return guess; |
427 | } |
428 | return BignumStrtod(trimmed, exponent, guess); |
429 | } |
430 | |
431 | } // namespace internal |
432 | } // namespace v8 |
433 | |