1 | // Copyright 2011 the V8 project authors. All rights reserved. |
2 | // Use of this source code is governed by a BSD-style license that can be |
3 | // found in the LICENSE file. |
4 | |
5 | #include <stdint.h> |
6 | |
7 | #include <cmath> |
8 | |
9 | #include "src/base/logging.h" |
10 | #include "src/utils.h" |
11 | |
12 | #include "src/double.h" |
13 | #include "src/fixed-dtoa.h" |
14 | |
15 | namespace v8 { |
16 | namespace internal { |
17 | |
18 | // Represents a 128bit type. This class should be replaced by a native type on |
19 | // platforms that support 128bit integers. |
20 | class UInt128 { |
21 | public: |
22 | UInt128() : high_bits_(0), low_bits_(0) { } |
23 | UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { } |
24 | |
25 | void Multiply(uint32_t multiplicand) { |
26 | uint64_t accumulator; |
27 | |
28 | accumulator = (low_bits_ & kMask32) * multiplicand; |
29 | uint32_t part = static_cast<uint32_t>(accumulator & kMask32); |
30 | accumulator >>= 32; |
31 | accumulator = accumulator + (low_bits_ >> 32) * multiplicand; |
32 | low_bits_ = (accumulator << 32) + part; |
33 | accumulator >>= 32; |
34 | accumulator = accumulator + (high_bits_ & kMask32) * multiplicand; |
35 | part = static_cast<uint32_t>(accumulator & kMask32); |
36 | accumulator >>= 32; |
37 | accumulator = accumulator + (high_bits_ >> 32) * multiplicand; |
38 | high_bits_ = (accumulator << 32) + part; |
39 | DCHECK_EQ(accumulator >> 32, 0); |
40 | } |
41 | |
42 | void Shift(int shift_amount) { |
43 | DCHECK(-64 <= shift_amount && shift_amount <= 64); |
44 | if (shift_amount == 0) { |
45 | return; |
46 | } else if (shift_amount == -64) { |
47 | high_bits_ = low_bits_; |
48 | low_bits_ = 0; |
49 | } else if (shift_amount == 64) { |
50 | low_bits_ = high_bits_; |
51 | high_bits_ = 0; |
52 | } else if (shift_amount <= 0) { |
53 | high_bits_ <<= -shift_amount; |
54 | high_bits_ += low_bits_ >> (64 + shift_amount); |
55 | low_bits_ <<= -shift_amount; |
56 | } else { |
57 | low_bits_ >>= shift_amount; |
58 | low_bits_ += high_bits_ << (64 - shift_amount); |
59 | high_bits_ >>= shift_amount; |
60 | } |
61 | } |
62 | |
63 | // Modifies *this to *this MOD (2^power). |
64 | // Returns *this DIV (2^power). |
65 | int DivModPowerOf2(int power) { |
66 | if (power >= 64) { |
67 | int result = static_cast<int>(high_bits_ >> (power - 64)); |
68 | high_bits_ -= static_cast<uint64_t>(result) << (power - 64); |
69 | return result; |
70 | } else { |
71 | uint64_t part_low = low_bits_ >> power; |
72 | uint64_t part_high = high_bits_ << (64 - power); |
73 | int result = static_cast<int>(part_low + part_high); |
74 | high_bits_ = 0; |
75 | low_bits_ -= part_low << power; |
76 | return result; |
77 | } |
78 | } |
79 | |
80 | bool IsZero() const { |
81 | return high_bits_ == 0 && low_bits_ == 0; |
82 | } |
83 | |
84 | int BitAt(int position) { |
85 | if (position >= 64) { |
86 | return static_cast<int>(high_bits_ >> (position - 64)) & 1; |
87 | } else { |
88 | return static_cast<int>(low_bits_ >> position) & 1; |
89 | } |
90 | } |
91 | |
92 | private: |
93 | static const uint64_t kMask32 = 0xFFFFFFFF; |
94 | // Value == (high_bits_ << 64) + low_bits_ |
95 | uint64_t high_bits_; |
96 | uint64_t low_bits_; |
97 | }; |
98 | |
99 | |
100 | static const int kDoubleSignificandSize = 53; // Includes the hidden bit. |
101 | |
102 | |
103 | static void FillDigits32FixedLength(uint32_t number, int requested_length, |
104 | Vector<char> buffer, int* length) { |
105 | for (int i = requested_length - 1; i >= 0; --i) { |
106 | buffer[(*length) + i] = '0' + number % 10; |
107 | number /= 10; |
108 | } |
109 | *length += requested_length; |
110 | } |
111 | |
112 | |
113 | static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) { |
114 | int number_length = 0; |
115 | // We fill the digits in reverse order and exchange them afterwards. |
116 | while (number != 0) { |
117 | int digit = number % 10; |
118 | number /= 10; |
119 | buffer[(*length) + number_length] = '0' + digit; |
120 | number_length++; |
121 | } |
122 | // Exchange the digits. |
123 | int i = *length; |
124 | int j = *length + number_length - 1; |
125 | while (i < j) { |
126 | char tmp = buffer[i]; |
127 | buffer[i] = buffer[j]; |
128 | buffer[j] = tmp; |
129 | i++; |
130 | j--; |
131 | } |
132 | *length += number_length; |
133 | } |
134 | |
135 | |
136 | static void FillDigits64FixedLength(uint64_t number, int requested_length, |
137 | Vector<char> buffer, int* length) { |
138 | const uint32_t kTen7 = 10000000; |
139 | // For efficiency cut the number into 3 uint32_t parts, and print those. |
140 | uint32_t part2 = static_cast<uint32_t>(number % kTen7); |
141 | number /= kTen7; |
142 | uint32_t part1 = static_cast<uint32_t>(number % kTen7); |
143 | uint32_t part0 = static_cast<uint32_t>(number / kTen7); |
144 | |
145 | FillDigits32FixedLength(part0, 3, buffer, length); |
146 | FillDigits32FixedLength(part1, 7, buffer, length); |
147 | FillDigits32FixedLength(part2, 7, buffer, length); |
148 | } |
149 | |
150 | |
151 | static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) { |
152 | const uint32_t kTen7 = 10000000; |
153 | // For efficiency cut the number into 3 uint32_t parts, and print those. |
154 | uint32_t part2 = static_cast<uint32_t>(number % kTen7); |
155 | number /= kTen7; |
156 | uint32_t part1 = static_cast<uint32_t>(number % kTen7); |
157 | uint32_t part0 = static_cast<uint32_t>(number / kTen7); |
158 | |
159 | if (part0 != 0) { |
160 | FillDigits32(part0, buffer, length); |
161 | FillDigits32FixedLength(part1, 7, buffer, length); |
162 | FillDigits32FixedLength(part2, 7, buffer, length); |
163 | } else if (part1 != 0) { |
164 | FillDigits32(part1, buffer, length); |
165 | FillDigits32FixedLength(part2, 7, buffer, length); |
166 | } else { |
167 | FillDigits32(part2, buffer, length); |
168 | } |
169 | } |
170 | |
171 | static void DtoaRoundUp(Vector<char> buffer, int* length, int* decimal_point) { |
172 | // An empty buffer represents 0. |
173 | if (*length == 0) { |
174 | buffer[0] = '1'; |
175 | *decimal_point = 1; |
176 | *length = 1; |
177 | return; |
178 | } |
179 | // Round the last digit until we either have a digit that was not '9' or until |
180 | // we reached the first digit. |
181 | buffer[(*length) - 1]++; |
182 | for (int i = (*length) - 1; i > 0; --i) { |
183 | if (buffer[i] != '0' + 10) { |
184 | return; |
185 | } |
186 | buffer[i] = '0'; |
187 | buffer[i - 1]++; |
188 | } |
189 | // If the first digit is now '0' + 10, we would need to set it to '0' and add |
190 | // a '1' in front. However we reach the first digit only if all following |
191 | // digits had been '9' before rounding up. Now all trailing digits are '0' and |
192 | // we simply switch the first digit to '1' and update the decimal-point |
193 | // (indicating that the point is now one digit to the right). |
194 | if (buffer[0] == '0' + 10) { |
195 | buffer[0] = '1'; |
196 | (*decimal_point)++; |
197 | } |
198 | } |
199 | |
200 | |
201 | // The given fractionals number represents a fixed-point number with binary |
202 | // point at bit (-exponent). |
203 | // Preconditions: |
204 | // -128 <= exponent <= 0. |
205 | // 0 <= fractionals * 2^exponent < 1 |
206 | // The buffer holds the result. |
207 | // The function will round its result. During the rounding-process digits not |
208 | // generated by this function might be updated, and the decimal-point variable |
209 | // might be updated. If this function generates the digits 99 and the buffer |
210 | // already contained "199" (thus yielding a buffer of "19999") then a |
211 | // rounding-up will change the contents of the buffer to "20000". |
212 | static void FillFractionals(uint64_t fractionals, int exponent, |
213 | int fractional_count, Vector<char> buffer, |
214 | int* length, int* decimal_point) { |
215 | DCHECK(-128 <= exponent && exponent <= 0); |
216 | // 'fractionals' is a fixed-point number, with binary point at bit |
217 | // (-exponent). Inside the function the non-converted remainder of fractionals |
218 | // is a fixed-point number, with binary point at bit 'point'. |
219 | if (-exponent <= 64) { |
220 | // One 64 bit number is sufficient. |
221 | DCHECK_EQ(fractionals >> 56, 0); |
222 | int point = -exponent; |
223 | for (int i = 0; i < fractional_count; ++i) { |
224 | if (fractionals == 0) break; |
225 | // Instead of multiplying by 10 we multiply by 5 and adjust the point |
226 | // location. This way the fractionals variable will not overflow. |
227 | // Invariant at the beginning of the loop: fractionals < 2^point. |
228 | // Initially we have: point <= 64 and fractionals < 2^56 |
229 | // After each iteration the point is decremented by one. |
230 | // Note that 5^3 = 125 < 128 = 2^7. |
231 | // Therefore three iterations of this loop will not overflow fractionals |
232 | // (even without the subtraction at the end of the loop body). At this |
233 | // time point will satisfy point <= 61 and therefore fractionals < 2^point |
234 | // and any further multiplication of fractionals by 5 will not overflow. |
235 | fractionals *= 5; |
236 | point--; |
237 | int digit = static_cast<int>(fractionals >> point); |
238 | buffer[*length] = '0' + digit; |
239 | (*length)++; |
240 | fractionals -= static_cast<uint64_t>(digit) << point; |
241 | } |
242 | // If the first bit after the point is set we have to round up. |
243 | if (point > 0 && ((fractionals >> (point - 1)) & 1) == 1) { |
244 | DtoaRoundUp(buffer, length, decimal_point); |
245 | } |
246 | } else { // We need 128 bits. |
247 | DCHECK(64 < -exponent && -exponent <= 128); |
248 | UInt128 fractionals128 = UInt128(fractionals, 0); |
249 | fractionals128.Shift(-exponent - 64); |
250 | int point = 128; |
251 | for (int i = 0; i < fractional_count; ++i) { |
252 | if (fractionals128.IsZero()) break; |
253 | // As before: instead of multiplying by 10 we multiply by 5 and adjust the |
254 | // point location. |
255 | // This multiplication will not overflow for the same reasons as before. |
256 | fractionals128.Multiply(5); |
257 | point--; |
258 | int digit = fractionals128.DivModPowerOf2(point); |
259 | buffer[*length] = '0' + digit; |
260 | (*length)++; |
261 | } |
262 | if (fractionals128.BitAt(point - 1) == 1) { |
263 | DtoaRoundUp(buffer, length, decimal_point); |
264 | } |
265 | } |
266 | } |
267 | |
268 | |
269 | // Removes leading and trailing zeros. |
270 | // If leading zeros are removed then the decimal point position is adjusted. |
271 | static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) { |
272 | while (*length > 0 && buffer[(*length) - 1] == '0') { |
273 | (*length)--; |
274 | } |
275 | int first_non_zero = 0; |
276 | while (first_non_zero < *length && buffer[first_non_zero] == '0') { |
277 | first_non_zero++; |
278 | } |
279 | if (first_non_zero != 0) { |
280 | for (int i = first_non_zero; i < *length; ++i) { |
281 | buffer[i - first_non_zero] = buffer[i]; |
282 | } |
283 | *length -= first_non_zero; |
284 | *decimal_point -= first_non_zero; |
285 | } |
286 | } |
287 | |
288 | |
289 | bool FastFixedDtoa(double v, |
290 | int fractional_count, |
291 | Vector<char> buffer, |
292 | int* length, |
293 | int* decimal_point) { |
294 | const uint32_t kMaxUInt32 = 0xFFFFFFFF; |
295 | uint64_t significand = Double(v).Significand(); |
296 | int exponent = Double(v).Exponent(); |
297 | // v = significand * 2^exponent (with significand a 53bit integer). |
298 | // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we |
299 | // don't know how to compute the representation. 2^73 ~= 9.5*10^21. |
300 | // If necessary this limit could probably be increased, but we don't need |
301 | // more. |
302 | if (exponent > 20) return false; |
303 | if (fractional_count > 20) return false; |
304 | *length = 0; |
305 | // At most kDoubleSignificandSize bits of the significand are non-zero. |
306 | // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero |
307 | // bits: 0..11*..0xxx..53*..xx |
308 | if (exponent + kDoubleSignificandSize > 64) { |
309 | // The exponent must be > 11. |
310 | // |
311 | // We know that v = significand * 2^exponent. |
312 | // And the exponent > 11. |
313 | // We simplify the task by dividing v by 10^17. |
314 | // The quotient delivers the first digits, and the remainder fits into a 64 |
315 | // bit number. |
316 | // Dividing by 10^17 is equivalent to dividing by 5^17*2^17. |
317 | const uint64_t kFive17 = V8_2PART_UINT64_C(0xB1, A2BC2EC5); // 5^17 |
318 | uint64_t divisor = kFive17; |
319 | int divisor_power = 17; |
320 | uint64_t dividend = significand; |
321 | uint32_t quotient; |
322 | uint64_t remainder; |
323 | // Let v = f * 2^e with f == significand and e == exponent. |
324 | // Then need q (quotient) and r (remainder) as follows: |
325 | // v = q * 10^17 + r |
326 | // f * 2^e = q * 10^17 + r |
327 | // f * 2^e = q * 5^17 * 2^17 + r |
328 | // If e > 17 then |
329 | // f * 2^(e-17) = q * 5^17 + r/2^17 |
330 | // else |
331 | // f = q * 5^17 * 2^(17-e) + r/2^e |
332 | if (exponent > divisor_power) { |
333 | // We only allow exponents of up to 20 and therefore (17 - e) <= 3 |
334 | dividend <<= exponent - divisor_power; |
335 | quotient = static_cast<uint32_t>(dividend / divisor); |
336 | remainder = (dividend % divisor) << divisor_power; |
337 | } else { |
338 | divisor <<= divisor_power - exponent; |
339 | quotient = static_cast<uint32_t>(dividend / divisor); |
340 | remainder = (dividend % divisor) << exponent; |
341 | } |
342 | FillDigits32(quotient, buffer, length); |
343 | FillDigits64FixedLength(remainder, divisor_power, buffer, length); |
344 | *decimal_point = *length; |
345 | } else if (exponent >= 0) { |
346 | // 0 <= exponent <= 11 |
347 | significand <<= exponent; |
348 | FillDigits64(significand, buffer, length); |
349 | *decimal_point = *length; |
350 | } else if (exponent > -kDoubleSignificandSize) { |
351 | // We have to cut the number. |
352 | uint64_t integrals = significand >> -exponent; |
353 | uint64_t fractionals = significand - (integrals << -exponent); |
354 | if (integrals > kMaxUInt32) { |
355 | FillDigits64(integrals, buffer, length); |
356 | } else { |
357 | FillDigits32(static_cast<uint32_t>(integrals), buffer, length); |
358 | } |
359 | *decimal_point = *length; |
360 | FillFractionals(fractionals, exponent, fractional_count, |
361 | buffer, length, decimal_point); |
362 | } else if (exponent < -128) { |
363 | // This configuration (with at most 20 digits) means that all digits must be |
364 | // 0. |
365 | DCHECK_LE(fractional_count, 20); |
366 | buffer[0] = '\0'; |
367 | *length = 0; |
368 | *decimal_point = -fractional_count; |
369 | } else { |
370 | *decimal_point = 0; |
371 | FillFractionals(significand, exponent, fractional_count, |
372 | buffer, length, decimal_point); |
373 | } |
374 | TrimZeros(buffer, length, decimal_point); |
375 | buffer[*length] = '\0'; |
376 | if ((*length) == 0) { |
377 | // The string is empty and the decimal_point thus has no importance. Mimick |
378 | // Gay's dtoa and and set it to -fractional_count. |
379 | *decimal_point = -fractional_count; |
380 | } |
381 | return true; |
382 | } |
383 | |
384 | } // namespace internal |
385 | } // namespace v8 |
386 | |