1 | // Copyright 2011 the V8 project authors. All rights reserved. |
2 | // Use of this source code is governed by a BSD-style license that can be |
3 | // found in the LICENSE file. |
4 | |
5 | #include <stdint.h> |
6 | #include "src/base/logging.h" |
7 | #include "src/utils.h" |
8 | |
9 | #include "src/fast-dtoa.h" |
10 | |
11 | #include "src/cached-powers.h" |
12 | #include "src/diy-fp.h" |
13 | #include "src/double.h" |
14 | |
15 | namespace v8 { |
16 | namespace internal { |
17 | |
18 | // The minimal and maximal target exponent define the range of w's binary |
19 | // exponent, where 'w' is the result of multiplying the input by a cached power |
20 | // of ten. |
21 | // |
22 | // A different range might be chosen on a different platform, to optimize digit |
23 | // generation, but a smaller range requires more powers of ten to be cached. |
24 | static const int kMinimalTargetExponent = -60; |
25 | static const int kMaximalTargetExponent = -32; |
26 | |
27 | |
28 | // Adjusts the last digit of the generated number, and screens out generated |
29 | // solutions that may be inaccurate. A solution may be inaccurate if it is |
30 | // outside the safe interval, or if we ctannot prove that it is closer to the |
31 | // input than a neighboring representation of the same length. |
32 | // |
33 | // Input: * buffer containing the digits of too_high / 10^kappa |
34 | // * the buffer's length |
35 | // * distance_too_high_w == (too_high - w).f() * unit |
36 | // * unsafe_interval == (too_high - too_low).f() * unit |
37 | // * rest = (too_high - buffer * 10^kappa).f() * unit |
38 | // * ten_kappa = 10^kappa * unit |
39 | // * unit = the common multiplier |
40 | // Output: returns true if the buffer is guaranteed to contain the closest |
41 | // representable number to the input. |
42 | // Modifies the generated digits in the buffer to approach (round towards) w. |
43 | static bool RoundWeed(Vector<char> buffer, |
44 | int length, |
45 | uint64_t distance_too_high_w, |
46 | uint64_t unsafe_interval, |
47 | uint64_t rest, |
48 | uint64_t ten_kappa, |
49 | uint64_t unit) { |
50 | uint64_t small_distance = distance_too_high_w - unit; |
51 | uint64_t big_distance = distance_too_high_w + unit; |
52 | // Let w_low = too_high - big_distance, and |
53 | // w_high = too_high - small_distance. |
54 | // Note: w_low < w < w_high |
55 | // |
56 | // The real w (* unit) must lie somewhere inside the interval |
57 | // ]w_low; w_high[ (often written as "(w_low; w_high)") |
58 | |
59 | // Basically the buffer currently contains a number in the unsafe interval |
60 | // ]too_low; too_high[ with too_low < w < too_high |
61 | // |
62 | // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
63 | // ^v 1 unit ^ ^ ^ ^ |
64 | // boundary_high --------------------- . . . . |
65 | // ^v 1 unit . . . . |
66 | // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . . |
67 | // . . ^ . . |
68 | // . big_distance . . . |
69 | // . . . . rest |
70 | // small_distance . . . . |
71 | // v . . . . |
72 | // w_high - - - - - - - - - - - - - - - - - - . . . . |
73 | // ^v 1 unit . . . . |
74 | // w ---------------------------------------- . . . . |
75 | // ^v 1 unit v . . . |
76 | // w_low - - - - - - - - - - - - - - - - - - - - - . . . |
77 | // . . v |
78 | // buffer --------------------------------------------------+-------+-------- |
79 | // . . |
80 | // safe_interval . |
81 | // v . |
82 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . |
83 | // ^v 1 unit . |
84 | // boundary_low ------------------------- unsafe_interval |
85 | // ^v 1 unit v |
86 | // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
87 | // |
88 | // |
89 | // Note that the value of buffer could lie anywhere inside the range too_low |
90 | // to too_high. |
91 | // |
92 | // boundary_low, boundary_high and w are approximations of the real boundaries |
93 | // and v (the input number). They are guaranteed to be precise up to one unit. |
94 | // In fact the error is guaranteed to be strictly less than one unit. |
95 | // |
96 | // Anything that lies outside the unsafe interval is guaranteed not to round |
97 | // to v when read again. |
98 | // Anything that lies inside the safe interval is guaranteed to round to v |
99 | // when read again. |
100 | // If the number inside the buffer lies inside the unsafe interval but not |
101 | // inside the safe interval then we simply do not know and bail out (returning |
102 | // false). |
103 | // |
104 | // Similarly we have to take into account the imprecision of 'w' when finding |
105 | // the closest representation of 'w'. If we have two potential |
106 | // representations, and one is closer to both w_low and w_high, then we know |
107 | // it is closer to the actual value v. |
108 | // |
109 | // By generating the digits of too_high we got the largest (closest to |
110 | // too_high) buffer that is still in the unsafe interval. In the case where |
111 | // w_high < buffer < too_high we try to decrement the buffer. |
112 | // This way the buffer approaches (rounds towards) w. |
113 | // There are 3 conditions that stop the decrementation process: |
114 | // 1) the buffer is already below w_high |
115 | // 2) decrementing the buffer would make it leave the unsafe interval |
116 | // 3) decrementing the buffer would yield a number below w_high and farther |
117 | // away than the current number. In other words: |
118 | // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high |
119 | // Instead of using the buffer directly we use its distance to too_high. |
120 | // Conceptually rest ~= too_high - buffer |
121 | // We need to do the following tests in this order to avoid over- and |
122 | // underflows. |
123 | DCHECK(rest <= unsafe_interval); |
124 | while (rest < small_distance && // Negated condition 1 |
125 | unsafe_interval - rest >= ten_kappa && // Negated condition 2 |
126 | (rest + ten_kappa < small_distance || // buffer{-1} > w_high |
127 | small_distance - rest >= rest + ten_kappa - small_distance)) { |
128 | buffer[length - 1]--; |
129 | rest += ten_kappa; |
130 | } |
131 | |
132 | // We have approached w+ as much as possible. We now test if approaching w- |
133 | // would require changing the buffer. If yes, then we have two possible |
134 | // representations close to w, but we cannot decide which one is closer. |
135 | if (rest < big_distance && |
136 | unsafe_interval - rest >= ten_kappa && |
137 | (rest + ten_kappa < big_distance || |
138 | big_distance - rest > rest + ten_kappa - big_distance)) { |
139 | return false; |
140 | } |
141 | |
142 | // Weeding test. |
143 | // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] |
144 | // Since too_low = too_high - unsafe_interval this is equivalent to |
145 | // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] |
146 | // Conceptually we have: rest ~= too_high - buffer |
147 | return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); |
148 | } |
149 | |
150 | |
151 | // Rounds the buffer upwards if the result is closer to v by possibly adding |
152 | // 1 to the buffer. If the precision of the calculation is not sufficient to |
153 | // round correctly, return false. |
154 | // The rounding might shift the whole buffer in which case the kappa is |
155 | // adjusted. For example "99", kappa = 3 might become "10", kappa = 4. |
156 | // |
157 | // If 2*rest > ten_kappa then the buffer needs to be round up. |
158 | // rest can have an error of +/- 1 unit. This function accounts for the |
159 | // imprecision and returns false, if the rounding direction cannot be |
160 | // unambiguously determined. |
161 | // |
162 | // Precondition: rest < ten_kappa. |
163 | static bool RoundWeedCounted(Vector<char> buffer, |
164 | int length, |
165 | uint64_t rest, |
166 | uint64_t ten_kappa, |
167 | uint64_t unit, |
168 | int* kappa) { |
169 | DCHECK(rest < ten_kappa); |
170 | // The following tests are done in a specific order to avoid overflows. They |
171 | // will work correctly with any uint64 values of rest < ten_kappa and unit. |
172 | // |
173 | // If the unit is too big, then we don't know which way to round. For example |
174 | // a unit of 50 means that the real number lies within rest +/- 50. If |
175 | // 10^kappa == 40 then there is no way to tell which way to round. |
176 | if (unit >= ten_kappa) return false; |
177 | // Even if unit is just half the size of 10^kappa we are already completely |
178 | // lost. (And after the previous test we know that the expression will not |
179 | // over/underflow.) |
180 | if (ten_kappa - unit <= unit) return false; |
181 | // If 2 * (rest + unit) <= 10^kappa we can safely round down. |
182 | if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) { |
183 | return true; |
184 | } |
185 | // If 2 * (rest - unit) >= 10^kappa, then we can safely round up. |
186 | if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) { |
187 | // Increment the last digit recursively until we find a non '9' digit. |
188 | buffer[length - 1]++; |
189 | for (int i = length - 1; i > 0; --i) { |
190 | if (buffer[i] != '0' + 10) break; |
191 | buffer[i] = '0'; |
192 | buffer[i - 1]++; |
193 | } |
194 | // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the |
195 | // exception of the first digit all digits are now '0'. Simply switch the |
196 | // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and |
197 | // the power (the kappa) is increased. |
198 | if (buffer[0] == '0' + 10) { |
199 | buffer[0] = '1'; |
200 | (*kappa) += 1; |
201 | } |
202 | return true; |
203 | } |
204 | return false; |
205 | } |
206 | |
207 | |
208 | static const uint32_t kTen4 = 10000; |
209 | static const uint32_t kTen5 = 100000; |
210 | static const uint32_t kTen6 = 1000000; |
211 | static const uint32_t kTen7 = 10000000; |
212 | static const uint32_t kTen8 = 100000000; |
213 | static const uint32_t kTen9 = 1000000000; |
214 | |
215 | // Returns the biggest power of ten that is less than or equal than the given |
216 | // number. We furthermore receive the maximum number of bits 'number' has. |
217 | // If number_bits == 0 then 0^-1 is returned |
218 | // The number of bits must be <= 32. |
219 | // Precondition: number < (1 << (number_bits + 1)). |
220 | static void BiggestPowerTen(uint32_t number, |
221 | int number_bits, |
222 | uint32_t* power, |
223 | int* exponent) { |
224 | switch (number_bits) { |
225 | case 32: |
226 | case 31: |
227 | case 30: |
228 | if (kTen9 <= number) { |
229 | *power = kTen9; |
230 | *exponent = 9; |
231 | break; |
232 | } |
233 | V8_FALLTHROUGH; |
234 | case 29: |
235 | case 28: |
236 | case 27: |
237 | if (kTen8 <= number) { |
238 | *power = kTen8; |
239 | *exponent = 8; |
240 | break; |
241 | } |
242 | V8_FALLTHROUGH; |
243 | case 26: |
244 | case 25: |
245 | case 24: |
246 | if (kTen7 <= number) { |
247 | *power = kTen7; |
248 | *exponent = 7; |
249 | break; |
250 | } |
251 | V8_FALLTHROUGH; |
252 | case 23: |
253 | case 22: |
254 | case 21: |
255 | case 20: |
256 | if (kTen6 <= number) { |
257 | *power = kTen6; |
258 | *exponent = 6; |
259 | break; |
260 | } |
261 | V8_FALLTHROUGH; |
262 | case 19: |
263 | case 18: |
264 | case 17: |
265 | if (kTen5 <= number) { |
266 | *power = kTen5; |
267 | *exponent = 5; |
268 | break; |
269 | } |
270 | V8_FALLTHROUGH; |
271 | case 16: |
272 | case 15: |
273 | case 14: |
274 | if (kTen4 <= number) { |
275 | *power = kTen4; |
276 | *exponent = 4; |
277 | break; |
278 | } |
279 | V8_FALLTHROUGH; |
280 | case 13: |
281 | case 12: |
282 | case 11: |
283 | case 10: |
284 | if (1000 <= number) { |
285 | *power = 1000; |
286 | *exponent = 3; |
287 | break; |
288 | } |
289 | V8_FALLTHROUGH; |
290 | case 9: |
291 | case 8: |
292 | case 7: |
293 | if (100 <= number) { |
294 | *power = 100; |
295 | *exponent = 2; |
296 | break; |
297 | } |
298 | V8_FALLTHROUGH; |
299 | case 6: |
300 | case 5: |
301 | case 4: |
302 | if (10 <= number) { |
303 | *power = 10; |
304 | *exponent = 1; |
305 | break; |
306 | } |
307 | V8_FALLTHROUGH; |
308 | case 3: |
309 | case 2: |
310 | case 1: |
311 | if (1 <= number) { |
312 | *power = 1; |
313 | *exponent = 0; |
314 | break; |
315 | } |
316 | V8_FALLTHROUGH; |
317 | case 0: |
318 | *power = 0; |
319 | *exponent = -1; |
320 | break; |
321 | default: |
322 | // Following assignments are here to silence compiler warnings. |
323 | *power = 0; |
324 | *exponent = 0; |
325 | UNREACHABLE(); |
326 | } |
327 | } |
328 | |
329 | // Generates the digits of input number w. |
330 | // w is a floating-point number (DiyFp), consisting of a significand and an |
331 | // exponent. Its exponent is bounded by kMinimalTargetExponent and |
332 | // kMaximalTargetExponent. |
333 | // Hence -60 <= w.e() <= -32. |
334 | // |
335 | // Returns false if it fails, in which case the generated digits in the buffer |
336 | // should not be used. |
337 | // Preconditions: |
338 | // * low, w and high are correct up to 1 ulp (unit in the last place). That |
339 | // is, their error must be less than a unit of their last digits. |
340 | // * low.e() == w.e() == high.e() |
341 | // * low < w < high, and taking into account their error: low~ <= high~ |
342 | // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent |
343 | // Postconditions: returns false if procedure fails. |
344 | // otherwise: |
345 | // * buffer is not null-terminated, but len contains the number of digits. |
346 | // * buffer contains the shortest possible decimal digit-sequence |
347 | // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the |
348 | // correct values of low and high (without their error). |
349 | // * if more than one decimal representation gives the minimal number of |
350 | // decimal digits then the one closest to W (where W is the correct value |
351 | // of w) is chosen. |
352 | // Remark: this procedure takes into account the imprecision of its input |
353 | // numbers. If the precision is not enough to guarantee all the postconditions |
354 | // then false is returned. This usually happens rarely (~0.5%). |
355 | // |
356 | // Say, for the sake of example, that |
357 | // w.e() == -48, and w.f() == 0x1234567890ABCDEF |
358 | // w's value can be computed by w.f() * 2^w.e() |
359 | // We can obtain w's integral digits by simply shifting w.f() by -w.e(). |
360 | // -> w's integral part is 0x1234 |
361 | // w's fractional part is therefore 0x567890ABCDEF. |
362 | // Printing w's integral part is easy (simply print 0x1234 in decimal). |
363 | // In order to print its fraction we repeatedly multiply the fraction by 10 and |
364 | // get each digit. Example the first digit after the point would be computed by |
365 | // (0x567890ABCDEF * 10) >> 48. -> 3 |
366 | // The whole thing becomes slightly more complicated because we want to stop |
367 | // once we have enough digits. That is, once the digits inside the buffer |
368 | // represent 'w' we can stop. Everything inside the interval low - high |
369 | // represents w. However we have to pay attention to low, high and w's |
370 | // imprecision. |
371 | static bool DigitGen(DiyFp low, |
372 | DiyFp w, |
373 | DiyFp high, |
374 | Vector<char> buffer, |
375 | int* length, |
376 | int* kappa) { |
377 | DCHECK(low.e() == w.e() && w.e() == high.e()); |
378 | DCHECK(low.f() + 1 <= high.f() - 1); |
379 | DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); |
380 | // low, w and high are imprecise, but by less than one ulp (unit in the last |
381 | // place). |
382 | // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that |
383 | // the new numbers are outside of the interval we want the final |
384 | // representation to lie in. |
385 | // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield |
386 | // numbers that are certain to lie in the interval. We will use this fact |
387 | // later on. |
388 | // We will now start by generating the digits within the uncertain |
389 | // interval. Later we will weed out representations that lie outside the safe |
390 | // interval and thus _might_ lie outside the correct interval. |
391 | uint64_t unit = 1; |
392 | DiyFp too_low = DiyFp(low.f() - unit, low.e()); |
393 | DiyFp too_high = DiyFp(high.f() + unit, high.e()); |
394 | // too_low and too_high are guaranteed to lie outside the interval we want the |
395 | // generated number in. |
396 | DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); |
397 | // We now cut the input number into two parts: the integral digits and the |
398 | // fractionals. We will not write any decimal separator though, but adapt |
399 | // kappa instead. |
400 | // Reminder: we are currently computing the digits (stored inside the buffer) |
401 | // such that: too_low < buffer * 10^kappa < too_high |
402 | // We use too_high for the digit_generation and stop as soon as possible. |
403 | // If we stop early we effectively round down. |
404 | DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); |
405 | // Division by one is a shift. |
406 | uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e()); |
407 | // Modulo by one is an and. |
408 | uint64_t fractionals = too_high.f() & (one.f() - 1); |
409 | uint32_t divisor; |
410 | int divisor_exponent; |
411 | BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), |
412 | &divisor, &divisor_exponent); |
413 | *kappa = divisor_exponent + 1; |
414 | *length = 0; |
415 | // Loop invariant: buffer = too_high / 10^kappa (integer division) |
416 | // The invariant holds for the first iteration: kappa has been initialized |
417 | // with the divisor exponent + 1. And the divisor is the biggest power of ten |
418 | // that is smaller than integrals. |
419 | while (*kappa > 0) { |
420 | int digit = integrals / divisor; |
421 | buffer[*length] = '0' + digit; |
422 | (*length)++; |
423 | integrals %= divisor; |
424 | (*kappa)--; |
425 | // Note that kappa now equals the exponent of the divisor and that the |
426 | // invariant thus holds again. |
427 | uint64_t rest = |
428 | (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; |
429 | // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) |
430 | // Reminder: unsafe_interval.e() == one.e() |
431 | if (rest < unsafe_interval.f()) { |
432 | // Rounding down (by not emitting the remaining digits) yields a number |
433 | // that lies within the unsafe interval. |
434 | return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), |
435 | unsafe_interval.f(), rest, |
436 | static_cast<uint64_t>(divisor) << -one.e(), unit); |
437 | } |
438 | divisor /= 10; |
439 | } |
440 | |
441 | // The integrals have been generated. We are at the point of the decimal |
442 | // separator. In the following loop we simply multiply the remaining digits by |
443 | // 10 and divide by one. We just need to pay attention to multiply associated |
444 | // data (like the interval or 'unit'), too. |
445 | // Note that the multiplication by 10 does not overflow, because w.e >= -60 |
446 | // and thus one.e >= -60. |
447 | DCHECK_GE(one.e(), -60); |
448 | DCHECK(fractionals < one.f()); |
449 | DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); |
450 | while (true) { |
451 | fractionals *= 10; |
452 | unit *= 10; |
453 | unsafe_interval.set_f(unsafe_interval.f() * 10); |
454 | // Integer division by one. |
455 | int digit = static_cast<int>(fractionals >> -one.e()); |
456 | buffer[*length] = '0' + digit; |
457 | (*length)++; |
458 | fractionals &= one.f() - 1; // Modulo by one. |
459 | (*kappa)--; |
460 | if (fractionals < unsafe_interval.f()) { |
461 | return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit, |
462 | unsafe_interval.f(), fractionals, one.f(), unit); |
463 | } |
464 | } |
465 | } |
466 | |
467 | |
468 | |
469 | // Generates (at most) requested_digits of input number w. |
470 | // w is a floating-point number (DiyFp), consisting of a significand and an |
471 | // exponent. Its exponent is bounded by kMinimalTargetExponent and |
472 | // kMaximalTargetExponent. |
473 | // Hence -60 <= w.e() <= -32. |
474 | // |
475 | // Returns false if it fails, in which case the generated digits in the buffer |
476 | // should not be used. |
477 | // Preconditions: |
478 | // * w is correct up to 1 ulp (unit in the last place). That |
479 | // is, its error must be strictly less than a unit of its last digit. |
480 | // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent |
481 | // |
482 | // Postconditions: returns false if procedure fails. |
483 | // otherwise: |
484 | // * buffer is not null-terminated, but length contains the number of |
485 | // digits. |
486 | // * the representation in buffer is the most precise representation of |
487 | // requested_digits digits. |
488 | // * buffer contains at most requested_digits digits of w. If there are less |
489 | // than requested_digits digits then some trailing '0's have been removed. |
490 | // * kappa is such that |
491 | // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2. |
492 | // |
493 | // Remark: This procedure takes into account the imprecision of its input |
494 | // numbers. If the precision is not enough to guarantee all the postconditions |
495 | // then false is returned. This usually happens rarely, but the failure-rate |
496 | // increases with higher requested_digits. |
497 | static bool DigitGenCounted(DiyFp w, |
498 | int requested_digits, |
499 | Vector<char> buffer, |
500 | int* length, |
501 | int* kappa) { |
502 | DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); |
503 | DCHECK_GE(kMinimalTargetExponent, -60); |
504 | DCHECK_LE(kMaximalTargetExponent, -32); |
505 | // w is assumed to have an error less than 1 unit. Whenever w is scaled we |
506 | // also scale its error. |
507 | uint64_t w_error = 1; |
508 | // We cut the input number into two parts: the integral digits and the |
509 | // fractional digits. We don't emit any decimal separator, but adapt kappa |
510 | // instead. Example: instead of writing "1.2" we put "12" into the buffer and |
511 | // increase kappa by 1. |
512 | DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); |
513 | // Division by one is a shift. |
514 | uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e()); |
515 | // Modulo by one is an and. |
516 | uint64_t fractionals = w.f() & (one.f() - 1); |
517 | uint32_t divisor; |
518 | int divisor_exponent; |
519 | BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), |
520 | &divisor, &divisor_exponent); |
521 | *kappa = divisor_exponent + 1; |
522 | *length = 0; |
523 | |
524 | // Loop invariant: buffer = w / 10^kappa (integer division) |
525 | // The invariant holds for the first iteration: kappa has been initialized |
526 | // with the divisor exponent + 1. And the divisor is the biggest power of ten |
527 | // that is smaller than 'integrals'. |
528 | while (*kappa > 0) { |
529 | int digit = integrals / divisor; |
530 | buffer[*length] = '0' + digit; |
531 | (*length)++; |
532 | requested_digits--; |
533 | integrals %= divisor; |
534 | (*kappa)--; |
535 | // Note that kappa now equals the exponent of the divisor and that the |
536 | // invariant thus holds again. |
537 | if (requested_digits == 0) break; |
538 | divisor /= 10; |
539 | } |
540 | |
541 | if (requested_digits == 0) { |
542 | uint64_t rest = |
543 | (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; |
544 | return RoundWeedCounted(buffer, *length, rest, |
545 | static_cast<uint64_t>(divisor) << -one.e(), w_error, |
546 | kappa); |
547 | } |
548 | |
549 | // The integrals have been generated. We are at the point of the decimal |
550 | // separator. In the following loop we simply multiply the remaining digits by |
551 | // 10 and divide by one. We just need to pay attention to multiply associated |
552 | // data (the 'unit'), too. |
553 | // Note that the multiplication by 10 does not overflow, because w.e >= -60 |
554 | // and thus one.e >= -60. |
555 | DCHECK_GE(one.e(), -60); |
556 | DCHECK(fractionals < one.f()); |
557 | DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); |
558 | while (requested_digits > 0 && fractionals > w_error) { |
559 | fractionals *= 10; |
560 | w_error *= 10; |
561 | // Integer division by one. |
562 | int digit = static_cast<int>(fractionals >> -one.e()); |
563 | buffer[*length] = '0' + digit; |
564 | (*length)++; |
565 | requested_digits--; |
566 | fractionals &= one.f() - 1; // Modulo by one. |
567 | (*kappa)--; |
568 | } |
569 | if (requested_digits != 0) return false; |
570 | return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error, |
571 | kappa); |
572 | } |
573 | |
574 | |
575 | // Provides a decimal representation of v. |
576 | // Returns true if it succeeds, otherwise the result cannot be trusted. |
577 | // There will be *length digits inside the buffer (not null-terminated). |
578 | // If the function returns true then |
579 | // v == (double) (buffer * 10^decimal_exponent). |
580 | // The digits in the buffer are the shortest representation possible: no |
581 | // 0.09999999999999999 instead of 0.1. The shorter representation will even be |
582 | // chosen even if the longer one would be closer to v. |
583 | // The last digit will be closest to the actual v. That is, even if several |
584 | // digits might correctly yield 'v' when read again, the closest will be |
585 | // computed. |
586 | static bool Grisu3(double v, |
587 | Vector<char> buffer, |
588 | int* length, |
589 | int* decimal_exponent) { |
590 | DiyFp w = Double(v).AsNormalizedDiyFp(); |
591 | // boundary_minus and boundary_plus are the boundaries between v and its |
592 | // closest floating-point neighbors. Any number strictly between |
593 | // boundary_minus and boundary_plus will round to v when convert to a double. |
594 | // Grisu3 will never output representations that lie exactly on a boundary. |
595 | DiyFp boundary_minus, boundary_plus; |
596 | Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
597 | DCHECK(boundary_plus.e() == w.e()); |
598 | DiyFp ten_mk; // Cached power of ten: 10^-k |
599 | int mk; // -k |
600 | int ten_mk_minimal_binary_exponent = |
601 | kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
602 | int ten_mk_maximal_binary_exponent = |
603 | kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
604 | PowersOfTenCache::GetCachedPowerForBinaryExponentRange( |
605 | ten_mk_minimal_binary_exponent, |
606 | ten_mk_maximal_binary_exponent, |
607 | &ten_mk, &mk); |
608 | DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() + |
609 | DiyFp::kSignificandSize) && |
610 | (kMaximalTargetExponent >= w.e() + ten_mk.e() + |
611 | DiyFp::kSignificandSize)); |
612 | // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a |
613 | // 64 bit significand and ten_mk is thus only precise up to 64 bits. |
614 | |
615 | // The DiyFp::Times procedure rounds its result, and ten_mk is approximated |
616 | // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now |
617 | // off by a small amount. |
618 | // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. |
619 | // In other words: let f = scaled_w.f() and e = scaled_w.e(), then |
620 | // (f-1) * 2^e < w*10^k < (f+1) * 2^e |
621 | DiyFp scaled_w = DiyFp::Times(w, ten_mk); |
622 | DCHECK(scaled_w.e() == |
623 | boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); |
624 | // In theory it would be possible to avoid some recomputations by computing |
625 | // the difference between w and boundary_minus/plus (a power of 2) and to |
626 | // compute scaled_boundary_minus/plus by subtracting/adding from |
627 | // scaled_w. However the code becomes much less readable and the speed |
628 | // enhancements are not terriffic. |
629 | DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); |
630 | DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); |
631 | |
632 | // DigitGen will generate the digits of scaled_w. Therefore we have |
633 | // v == (double) (scaled_w * 10^-mk). |
634 | // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an |
635 | // integer than it will be updated. For instance if scaled_w == 1.23 then |
636 | // the buffer will be filled with "123" und the decimal_exponent will be |
637 | // decreased by 2. |
638 | int kappa; |
639 | bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, |
640 | buffer, length, &kappa); |
641 | *decimal_exponent = -mk + kappa; |
642 | return result; |
643 | } |
644 | |
645 | |
646 | // The "counted" version of grisu3 (see above) only generates requested_digits |
647 | // number of digits. This version does not generate the shortest representation, |
648 | // and with enough requested digits 0.1 will at some point print as 0.9999999... |
649 | // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and |
650 | // therefore the rounding strategy for halfway cases is irrelevant. |
651 | static bool Grisu3Counted(double v, |
652 | int requested_digits, |
653 | Vector<char> buffer, |
654 | int* length, |
655 | int* decimal_exponent) { |
656 | DiyFp w = Double(v).AsNormalizedDiyFp(); |
657 | DiyFp ten_mk; // Cached power of ten: 10^-k |
658 | int mk; // -k |
659 | int ten_mk_minimal_binary_exponent = |
660 | kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
661 | int ten_mk_maximal_binary_exponent = |
662 | kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
663 | PowersOfTenCache::GetCachedPowerForBinaryExponentRange( |
664 | ten_mk_minimal_binary_exponent, |
665 | ten_mk_maximal_binary_exponent, |
666 | &ten_mk, &mk); |
667 | DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() + |
668 | DiyFp::kSignificandSize) && |
669 | (kMaximalTargetExponent >= w.e() + ten_mk.e() + |
670 | DiyFp::kSignificandSize)); |
671 | // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a |
672 | // 64 bit significand and ten_mk is thus only precise up to 64 bits. |
673 | |
674 | // The DiyFp::Times procedure rounds its result, and ten_mk is approximated |
675 | // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now |
676 | // off by a small amount. |
677 | // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. |
678 | // In other words: let f = scaled_w.f() and e = scaled_w.e(), then |
679 | // (f-1) * 2^e < w*10^k < (f+1) * 2^e |
680 | DiyFp scaled_w = DiyFp::Times(w, ten_mk); |
681 | |
682 | // We now have (double) (scaled_w * 10^-mk). |
683 | // DigitGen will generate the first requested_digits digits of scaled_w and |
684 | // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It |
685 | // will not always be exactly the same since DigitGenCounted only produces a |
686 | // limited number of digits.) |
687 | int kappa; |
688 | bool result = DigitGenCounted(scaled_w, requested_digits, |
689 | buffer, length, &kappa); |
690 | *decimal_exponent = -mk + kappa; |
691 | return result; |
692 | } |
693 | |
694 | |
695 | bool FastDtoa(double v, |
696 | FastDtoaMode mode, |
697 | int requested_digits, |
698 | Vector<char> buffer, |
699 | int* length, |
700 | int* decimal_point) { |
701 | DCHECK_GT(v, 0); |
702 | DCHECK(!Double(v).IsSpecial()); |
703 | |
704 | bool result = false; |
705 | int decimal_exponent = 0; |
706 | switch (mode) { |
707 | case FAST_DTOA_SHORTEST: |
708 | result = Grisu3(v, buffer, length, &decimal_exponent); |
709 | break; |
710 | case FAST_DTOA_PRECISION: |
711 | result = Grisu3Counted(v, requested_digits, |
712 | buffer, length, &decimal_exponent); |
713 | break; |
714 | default: |
715 | UNREACHABLE(); |
716 | } |
717 | if (result) { |
718 | *decimal_point = *length + decimal_exponent; |
719 | buffer[*length] = '\0'; |
720 | } |
721 | return result; |
722 | } |
723 | |
724 | } // namespace internal |
725 | } // namespace v8 |
726 | |