1 | // Copyright 2011 the V8 project authors. All rights reserved. |
2 | // Use of this source code is governed by a BSD-style license that can be |
3 | // found in the LICENSE file. |
4 | |
5 | #ifndef V8_DOUBLE_H_ |
6 | #define V8_DOUBLE_H_ |
7 | |
8 | #include "src/base/macros.h" |
9 | #include "src/diy-fp.h" |
10 | |
11 | namespace v8 { |
12 | namespace internal { |
13 | |
14 | // We assume that doubles and uint64_t have the same endianness. |
15 | inline uint64_t double_to_uint64(double d) { return bit_cast<uint64_t>(d); } |
16 | inline double uint64_to_double(uint64_t d64) { return bit_cast<double>(d64); } |
17 | |
18 | // Helper functions for doubles. |
19 | class Double { |
20 | public: |
21 | static constexpr uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000); |
22 | static constexpr uint64_t kExponentMask = |
23 | V8_2PART_UINT64_C(0x7FF00000, 00000000); |
24 | static constexpr uint64_t kSignificandMask = |
25 | V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); |
26 | static constexpr uint64_t kHiddenBit = |
27 | V8_2PART_UINT64_C(0x00100000, 00000000); |
28 | static constexpr int kPhysicalSignificandSize = |
29 | 52; // Excludes the hidden bit. |
30 | static constexpr int kSignificandSize = 53; |
31 | |
32 | Double() : d64_(0) {} |
33 | explicit Double(double d) : d64_(double_to_uint64(d)) {} |
34 | explicit Double(uint64_t d64) : d64_(d64) {} |
35 | explicit Double(DiyFp diy_fp) |
36 | : d64_(DiyFpToUint64(diy_fp)) {} |
37 | |
38 | // The value encoded by this Double must be greater or equal to +0.0. |
39 | // It must not be special (infinity, or NaN). |
40 | DiyFp AsDiyFp() const { |
41 | DCHECK_GT(Sign(), 0); |
42 | DCHECK(!IsSpecial()); |
43 | return DiyFp(Significand(), Exponent()); |
44 | } |
45 | |
46 | // The value encoded by this Double must be strictly greater than 0. |
47 | DiyFp AsNormalizedDiyFp() const { |
48 | DCHECK_GT(value(), 0.0); |
49 | uint64_t f = Significand(); |
50 | int e = Exponent(); |
51 | |
52 | // The current double could be a denormal. |
53 | while ((f & kHiddenBit) == 0) { |
54 | f <<= 1; |
55 | e--; |
56 | } |
57 | // Do the final shifts in one go. |
58 | f <<= DiyFp::kSignificandSize - kSignificandSize; |
59 | e -= DiyFp::kSignificandSize - kSignificandSize; |
60 | return DiyFp(f, e); |
61 | } |
62 | |
63 | // Returns the double's bit as uint64. |
64 | uint64_t AsUint64() const { |
65 | return d64_; |
66 | } |
67 | |
68 | // Returns the next greater double. Returns +infinity on input +infinity. |
69 | double NextDouble() const { |
70 | if (d64_ == kInfinity) return Double(kInfinity).value(); |
71 | if (Sign() < 0 && Significand() == 0) { |
72 | // -0.0 |
73 | return 0.0; |
74 | } |
75 | if (Sign() < 0) { |
76 | return Double(d64_ - 1).value(); |
77 | } else { |
78 | return Double(d64_ + 1).value(); |
79 | } |
80 | } |
81 | |
82 | int Exponent() const { |
83 | if (IsDenormal()) return kDenormalExponent; |
84 | |
85 | uint64_t d64 = AsUint64(); |
86 | int biased_e = |
87 | static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); |
88 | return biased_e - kExponentBias; |
89 | } |
90 | |
91 | uint64_t Significand() const { |
92 | uint64_t d64 = AsUint64(); |
93 | uint64_t significand = d64 & kSignificandMask; |
94 | if (!IsDenormal()) { |
95 | return significand + kHiddenBit; |
96 | } else { |
97 | return significand; |
98 | } |
99 | } |
100 | |
101 | // Returns true if the double is a denormal. |
102 | bool IsDenormal() const { |
103 | uint64_t d64 = AsUint64(); |
104 | return (d64 & kExponentMask) == 0; |
105 | } |
106 | |
107 | // We consider denormals not to be special. |
108 | // Hence only Infinity and NaN are special. |
109 | bool IsSpecial() const { |
110 | uint64_t d64 = AsUint64(); |
111 | return (d64 & kExponentMask) == kExponentMask; |
112 | } |
113 | |
114 | bool IsInfinite() const { |
115 | uint64_t d64 = AsUint64(); |
116 | return ((d64 & kExponentMask) == kExponentMask) && |
117 | ((d64 & kSignificandMask) == 0); |
118 | } |
119 | |
120 | int Sign() const { |
121 | uint64_t d64 = AsUint64(); |
122 | return (d64 & kSignMask) == 0? 1: -1; |
123 | } |
124 | |
125 | // Precondition: the value encoded by this Double must be greater or equal |
126 | // than +0.0. |
127 | DiyFp UpperBoundary() const { |
128 | DCHECK_GT(Sign(), 0); |
129 | return DiyFp(Significand() * 2 + 1, Exponent() - 1); |
130 | } |
131 | |
132 | // Returns the two boundaries of this. |
133 | // The bigger boundary (m_plus) is normalized. The lower boundary has the same |
134 | // exponent as m_plus. |
135 | // Precondition: the value encoded by this Double must be greater than 0. |
136 | void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { |
137 | DCHECK_GT(value(), 0.0); |
138 | DiyFp v = this->AsDiyFp(); |
139 | bool significand_is_zero = (v.f() == kHiddenBit); |
140 | DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); |
141 | DiyFp m_minus; |
142 | if (significand_is_zero && v.e() != kDenormalExponent) { |
143 | // The boundary is closer. Think of v = 1000e10 and v- = 9999e9. |
144 | // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but |
145 | // at a distance of 1e8. |
146 | // The only exception is for the smallest normal: the largest denormal is |
147 | // at the same distance as its successor. |
148 | // Note: denormals have the same exponent as the smallest normals. |
149 | m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); |
150 | } else { |
151 | m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); |
152 | } |
153 | m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); |
154 | m_minus.set_e(m_plus.e()); |
155 | *out_m_plus = m_plus; |
156 | *out_m_minus = m_minus; |
157 | } |
158 | |
159 | double value() const { return uint64_to_double(d64_); } |
160 | |
161 | // Returns the significand size for a given order of magnitude. |
162 | // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. |
163 | // This function returns the number of significant binary digits v will have |
164 | // once its encoded into a double. In almost all cases this is equal to |
165 | // kSignificandSize. The only exception are denormals. They start with leading |
166 | // zeroes and their effective significand-size is hence smaller. |
167 | static int SignificandSizeForOrderOfMagnitude(int order) { |
168 | if (order >= (kDenormalExponent + kSignificandSize)) { |
169 | return kSignificandSize; |
170 | } |
171 | if (order <= kDenormalExponent) return 0; |
172 | return order - kDenormalExponent; |
173 | } |
174 | |
175 | private: |
176 | static constexpr int kExponentBias = 0x3FF + kPhysicalSignificandSize; |
177 | static constexpr int kDenormalExponent = -kExponentBias + 1; |
178 | static constexpr int kMaxExponent = 0x7FF - kExponentBias; |
179 | static constexpr uint64_t kInfinity = V8_2PART_UINT64_C(0x7FF00000, 00000000); |
180 | |
181 | // The field d64_ is not marked as const to permit the usage of the copy |
182 | // constructor. |
183 | uint64_t d64_; |
184 | |
185 | static uint64_t DiyFpToUint64(DiyFp diy_fp) { |
186 | uint64_t significand = diy_fp.f(); |
187 | int exponent = diy_fp.e(); |
188 | while (significand > kHiddenBit + kSignificandMask) { |
189 | significand >>= 1; |
190 | exponent++; |
191 | } |
192 | if (exponent >= kMaxExponent) { |
193 | return kInfinity; |
194 | } |
195 | if (exponent < kDenormalExponent) { |
196 | return 0; |
197 | } |
198 | while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { |
199 | significand <<= 1; |
200 | exponent--; |
201 | } |
202 | uint64_t biased_exponent; |
203 | if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { |
204 | biased_exponent = 0; |
205 | } else { |
206 | biased_exponent = static_cast<uint64_t>(exponent + kExponentBias); |
207 | } |
208 | return (significand & kSignificandMask) | |
209 | (biased_exponent << kPhysicalSignificandSize); |
210 | } |
211 | }; |
212 | |
213 | } // namespace internal |
214 | } // namespace v8 |
215 | |
216 | #endif // V8_DOUBLE_H_ |
217 | |