1 | // Copyright 2012 the V8 project authors. All rights reserved. |
2 | // Use of this source code is governed by a BSD-style license that can be |
3 | // found in the LICENSE file. |
4 | |
5 | #ifndef V8_DATE_H_ |
6 | #define V8_DATE_H_ |
7 | |
8 | #include "src/base/timezone-cache.h" |
9 | #include "src/globals.h" |
10 | #include "src/objects/smi.h" |
11 | |
12 | namespace v8 { |
13 | namespace internal { |
14 | |
15 | class V8_EXPORT_PRIVATE DateCache { |
16 | public: |
17 | static const int kMsPerMin = 60 * 1000; |
18 | static const int kSecPerDay = 24 * 60 * 60; |
19 | static const int64_t kMsPerDay = kSecPerDay * 1000; |
20 | static const int64_t kMsPerMonth = kMsPerDay * 30; |
21 | |
22 | // The largest time that can be passed to OS date-time library functions. |
23 | static const int kMaxEpochTimeInSec = kMaxInt; |
24 | static const int64_t kMaxEpochTimeInMs = |
25 | static_cast<int64_t>(kMaxInt) * 1000; |
26 | |
27 | // The largest time that can be stored in JSDate. |
28 | static const int64_t kMaxTimeInMs = |
29 | static_cast<int64_t>(864000000) * 10000000; |
30 | |
31 | // Conservative upper bound on time that can be stored in JSDate |
32 | // before UTC conversion. |
33 | static const int64_t kMaxTimeBeforeUTCInMs = kMaxTimeInMs + kMsPerMonth; |
34 | |
35 | // Sentinel that denotes an invalid local offset. |
36 | static const int kInvalidLocalOffsetInMs = kMaxInt; |
37 | // Sentinel that denotes an invalid cache stamp. |
38 | // It is an invariant of DateCache that cache stamp is non-negative. |
39 | static const int kInvalidStamp = -1; |
40 | |
41 | DateCache(); |
42 | |
43 | virtual ~DateCache() { |
44 | delete tz_cache_; |
45 | tz_cache_ = nullptr; |
46 | } |
47 | |
48 | // Clears cached timezone information and increments the cache stamp. |
49 | void ResetDateCache( |
50 | base::TimezoneCache::TimeZoneDetection time_zone_detection); |
51 | |
52 | // Computes floor(time_ms / kMsPerDay). |
53 | static int DaysFromTime(int64_t time_ms) { |
54 | if (time_ms < 0) time_ms -= (kMsPerDay - 1); |
55 | return static_cast<int>(time_ms / kMsPerDay); |
56 | } |
57 | |
58 | |
59 | // Computes modulo(time_ms, kMsPerDay) given that |
60 | // days = floor(time_ms / kMsPerDay). |
61 | static int TimeInDay(int64_t time_ms, int days) { |
62 | return static_cast<int>(time_ms - days * kMsPerDay); |
63 | } |
64 | |
65 | // ECMA 262 - ES#sec-timeclip TimeClip (time) |
66 | static double TimeClip(double time); |
67 | |
68 | // Given the number of days since the epoch, computes the weekday. |
69 | // ECMA 262 - 15.9.1.6. |
70 | int Weekday(int days) { |
71 | int result = (days + 4) % 7; |
72 | return result >= 0 ? result : result + 7; |
73 | } |
74 | |
75 | |
76 | bool IsLeap(int year) { |
77 | return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0); |
78 | } |
79 | |
80 | // ECMA 262 - ES#sec-local-time-zone-adjustment |
81 | int LocalOffsetInMs(int64_t time, bool is_utc) { |
82 | return GetLocalOffsetFromOS(time, is_utc); |
83 | } |
84 | |
85 | |
86 | const char* LocalTimezone(int64_t time_ms) { |
87 | if (time_ms < 0 || time_ms > kMaxEpochTimeInMs) { |
88 | time_ms = EquivalentTime(time_ms); |
89 | } |
90 | bool is_dst = DaylightSavingsOffsetInMs(time_ms) != 0; |
91 | const char** name = is_dst ? &dst_tz_name_ : &tz_name_; |
92 | if (*name == nullptr) { |
93 | *name = tz_cache_->LocalTimezone(static_cast<double>(time_ms)); |
94 | } |
95 | return *name; |
96 | } |
97 | |
98 | // ECMA 262 - 15.9.5.26 |
99 | int TimezoneOffset(int64_t time_ms) { |
100 | int64_t local_ms = ToLocal(time_ms); |
101 | return static_cast<int>((time_ms - local_ms) / kMsPerMin); |
102 | } |
103 | |
104 | // ECMA 262 - ES#sec-localtime-t |
105 | // LocalTime(t) = t + LocalTZA(t, true) |
106 | int64_t ToLocal(int64_t time_ms) { |
107 | return time_ms + LocalOffsetInMs(time_ms, true); |
108 | } |
109 | |
110 | // ECMA 262 - ES#sec-utc-t |
111 | // UTC(t) = t - LocalTZA(t, false) |
112 | int64_t ToUTC(int64_t time_ms) { |
113 | return time_ms - LocalOffsetInMs(time_ms, false); |
114 | } |
115 | |
116 | |
117 | // Computes a time equivalent to the given time according |
118 | // to ECMA 262 - 15.9.1.9. |
119 | // The issue here is that some library calls don't work right for dates |
120 | // that cannot be represented using a non-negative signed 32 bit integer |
121 | // (measured in whole seconds based on the 1970 epoch). |
122 | // We solve this by mapping the time to a year with same leap-year-ness |
123 | // and same starting day for the year. The ECMAscript specification says |
124 | // we must do this, but for compatibility with other browsers, we use |
125 | // the actual year if it is in the range 1970..2037 |
126 | int64_t EquivalentTime(int64_t time_ms) { |
127 | int days = DaysFromTime(time_ms); |
128 | int time_within_day_ms = static_cast<int>(time_ms - days * kMsPerDay); |
129 | int year, month, day; |
130 | YearMonthDayFromDays(days, &year, &month, &day); |
131 | int new_days = DaysFromYearMonth(EquivalentYear(year), month) + day - 1; |
132 | return static_cast<int64_t>(new_days) * kMsPerDay + time_within_day_ms; |
133 | } |
134 | |
135 | // Returns an equivalent year in the range [2008-2035] matching |
136 | // - leap year, |
137 | // - week day of first day. |
138 | // ECMA 262 - 15.9.1.9. |
139 | int EquivalentYear(int year) { |
140 | int week_day = Weekday(DaysFromYearMonth(year, 0)); |
141 | int recent_year = (IsLeap(year) ? 1956 : 1967) + (week_day * 12) % 28; |
142 | // Find the year in the range 2008..2037 that is equivalent mod 28. |
143 | // Add 3*28 to give a positive argument to the modulus operator. |
144 | return 2008 + (recent_year + 3 * 28 - 2008) % 28; |
145 | } |
146 | |
147 | // Given the number of days since the epoch, computes |
148 | // the corresponding year, month, and day. |
149 | void YearMonthDayFromDays(int days, int* year, int* month, int* day); |
150 | |
151 | // Computes the number of days since the epoch for |
152 | // the first day of the given month in the given year. |
153 | int DaysFromYearMonth(int year, int month); |
154 | |
155 | // Breaks down the time value. |
156 | void BreakDownTime(int64_t time_ms, int* year, int* month, int* day, |
157 | int* weekday, int* hour, int* min, int* sec, int* ms); |
158 | |
159 | // Cache stamp is used for invalidating caches in JSDate. |
160 | // We increment the stamp each time when the timezone information changes. |
161 | // JSDate objects perform stamp check and invalidate their caches if |
162 | // their saved stamp is not equal to the current stamp. |
163 | Smi stamp() { return stamp_; } |
164 | void* stamp_address() { return &stamp_; } |
165 | |
166 | // These functions are virtual so that we can override them when testing. |
167 | virtual int GetDaylightSavingsOffsetFromOS(int64_t time_sec) { |
168 | double time_ms = static_cast<double>(time_sec * 1000); |
169 | return static_cast<int>(tz_cache_->DaylightSavingsOffset(time_ms)); |
170 | } |
171 | |
172 | virtual int GetLocalOffsetFromOS(int64_t time_ms, bool is_utc); |
173 | |
174 | private: |
175 | // The implementation relies on the fact that no time zones have |
176 | // more than one daylight savings offset change per 19 days. |
177 | // In Egypt in 2010 they decided to suspend DST during Ramadan. This |
178 | // led to a short interval where DST is in effect from September 10 to |
179 | // September 30. |
180 | static const int kDefaultDSTDeltaInSec = 19 * kSecPerDay; |
181 | |
182 | // Size of the Daylight Savings Time cache. |
183 | static const int kDSTSize = 32; |
184 | |
185 | // Daylight Savings Time segment stores a segment of time where |
186 | // daylight savings offset does not change. |
187 | struct DST { |
188 | int start_sec; |
189 | int end_sec; |
190 | int offset_ms; |
191 | int last_used; |
192 | }; |
193 | |
194 | // Computes the daylight savings offset for the given time. |
195 | // ECMA 262 - 15.9.1.8 |
196 | int DaylightSavingsOffsetInMs(int64_t time_ms); |
197 | |
198 | // Sets the before_ and the after_ segments from the DST cache such that |
199 | // the before_ segment starts earlier than the given time and |
200 | // the after_ segment start later than the given time. |
201 | // Both segments might be invalid. |
202 | // The last_used counters of the before_ and after_ are updated. |
203 | void ProbeDST(int time_sec); |
204 | |
205 | // Finds the least recently used segment from the DST cache that is not |
206 | // equal to the given 'skip' segment. |
207 | DST* LeastRecentlyUsedDST(DST* skip); |
208 | |
209 | // Extends the after_ segment with the given point or resets it |
210 | // if it starts later than the given time + kDefaultDSTDeltaInSec. |
211 | inline void ExtendTheAfterSegment(int time_sec, int offset_ms); |
212 | |
213 | // Makes the given segment invalid. |
214 | inline void ClearSegment(DST* segment); |
215 | |
216 | bool InvalidSegment(DST* segment) { |
217 | return segment->start_sec > segment->end_sec; |
218 | } |
219 | |
220 | Smi stamp_; |
221 | |
222 | // Daylight Saving Time cache. |
223 | DST dst_[kDSTSize]; |
224 | int dst_usage_counter_; |
225 | DST* before_; |
226 | DST* after_; |
227 | |
228 | int local_offset_ms_; |
229 | |
230 | // Year/Month/Day cache. |
231 | bool ymd_valid_; |
232 | int ymd_days_; |
233 | int ymd_year_; |
234 | int ymd_month_; |
235 | int ymd_day_; |
236 | |
237 | // Timezone name cache |
238 | const char* tz_name_; |
239 | const char* dst_tz_name_; |
240 | |
241 | base::TimezoneCache* tz_cache_; |
242 | }; |
243 | |
244 | } // namespace internal |
245 | } // namespace v8 |
246 | |
247 | #endif // V8_DATE_H_ |
248 | |