1 | // Copyright 2011 the V8 project authors. All rights reserved. |
2 | // Use of this source code is governed by a BSD-style license that can be |
3 | // found in the LICENSE file. |
4 | |
5 | #include "src/bignum-dtoa.h" |
6 | |
7 | #include <cmath> |
8 | |
9 | #include "src/base/logging.h" |
10 | #include "src/bignum.h" |
11 | #include "src/double.h" |
12 | #include "src/utils.h" |
13 | |
14 | namespace v8 { |
15 | namespace internal { |
16 | |
17 | static int NormalizedExponent(uint64_t significand, int exponent) { |
18 | DCHECK_NE(significand, 0); |
19 | while ((significand & Double::kHiddenBit) == 0) { |
20 | significand = significand << 1; |
21 | exponent = exponent - 1; |
22 | } |
23 | return exponent; |
24 | } |
25 | |
26 | |
27 | // Forward declarations: |
28 | // Returns an estimation of k such that 10^(k-1) <= v < 10^k. |
29 | static int EstimatePower(int exponent); |
30 | // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator |
31 | // and denominator. |
32 | static void InitialScaledStartValues(double v, |
33 | int estimated_power, |
34 | bool need_boundary_deltas, |
35 | Bignum* numerator, |
36 | Bignum* denominator, |
37 | Bignum* delta_minus, |
38 | Bignum* delta_plus); |
39 | // Multiplies numerator/denominator so that its values lies in the range 1-10. |
40 | // Returns decimal_point s.t. |
41 | // v = numerator'/denominator' * 10^(decimal_point-1) |
42 | // where numerator' and denominator' are the values of numerator and |
43 | // denominator after the call to this function. |
44 | static void FixupMultiply10(int estimated_power, bool is_even, |
45 | int* decimal_point, |
46 | Bignum* numerator, Bignum* denominator, |
47 | Bignum* delta_minus, Bignum* delta_plus); |
48 | // Generates digits from the left to the right and stops when the generated |
49 | // digits yield the shortest decimal representation of v. |
50 | static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
51 | Bignum* delta_minus, Bignum* delta_plus, |
52 | bool is_even, |
53 | Vector<char> buffer, int* length); |
54 | // Generates 'requested_digits' after the decimal point. |
55 | static void BignumToFixed(int requested_digits, int* decimal_point, |
56 | Bignum* numerator, Bignum* denominator, |
57 | Vector<char>(buffer), int* length); |
58 | // Generates 'count' digits of numerator/denominator. |
59 | // Once 'count' digits have been produced rounds the result depending on the |
60 | // remainder (remainders of exactly .5 round upwards). Might update the |
61 | // decimal_point when rounding up (for example for 0.9999). |
62 | static void GenerateCountedDigits(int count, int* decimal_point, |
63 | Bignum* numerator, Bignum* denominator, |
64 | Vector<char>(buffer), int* length); |
65 | |
66 | |
67 | void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, |
68 | Vector<char> buffer, int* length, int* decimal_point) { |
69 | DCHECK_GT(v, 0); |
70 | DCHECK(!Double(v).IsSpecial()); |
71 | uint64_t significand = Double(v).Significand(); |
72 | bool is_even = (significand & 1) == 0; |
73 | int exponent = Double(v).Exponent(); |
74 | int normalized_exponent = NormalizedExponent(significand, exponent); |
75 | // estimated_power might be too low by 1. |
76 | int estimated_power = EstimatePower(normalized_exponent); |
77 | |
78 | // Shortcut for Fixed. |
79 | // The requested digits correspond to the digits after the point. If the |
80 | // number is much too small, then there is no need in trying to get any |
81 | // digits. |
82 | if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { |
83 | buffer[0] = '\0'; |
84 | *length = 0; |
85 | // Set decimal-point to -requested_digits. This is what Gay does. |
86 | // Note that it should not have any effect anyways since the string is |
87 | // empty. |
88 | *decimal_point = -requested_digits; |
89 | return; |
90 | } |
91 | |
92 | Bignum numerator; |
93 | Bignum denominator; |
94 | Bignum delta_minus; |
95 | Bignum delta_plus; |
96 | // Make sure the bignum can grow large enough. The smallest double equals |
97 | // 4e-324. In this case the denominator needs fewer than 324*4 binary digits. |
98 | // The maximum double is 1.7976931348623157e308 which needs fewer than |
99 | // 308*4 binary digits. |
100 | DCHECK_GE(Bignum::kMaxSignificantBits, 324 * 4); |
101 | bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST); |
102 | InitialScaledStartValues(v, estimated_power, need_boundary_deltas, |
103 | &numerator, &denominator, |
104 | &delta_minus, &delta_plus); |
105 | // We now have v = (numerator / denominator) * 10^estimated_power. |
106 | FixupMultiply10(estimated_power, is_even, decimal_point, |
107 | &numerator, &denominator, |
108 | &delta_minus, &delta_plus); |
109 | // We now have v = (numerator / denominator) * 10^(decimal_point-1), and |
110 | // 1 <= (numerator + delta_plus) / denominator < 10 |
111 | switch (mode) { |
112 | case BIGNUM_DTOA_SHORTEST: |
113 | GenerateShortestDigits(&numerator, &denominator, |
114 | &delta_minus, &delta_plus, |
115 | is_even, buffer, length); |
116 | break; |
117 | case BIGNUM_DTOA_FIXED: |
118 | BignumToFixed(requested_digits, decimal_point, |
119 | &numerator, &denominator, |
120 | buffer, length); |
121 | break; |
122 | case BIGNUM_DTOA_PRECISION: |
123 | GenerateCountedDigits(requested_digits, decimal_point, |
124 | &numerator, &denominator, |
125 | buffer, length); |
126 | break; |
127 | default: |
128 | UNREACHABLE(); |
129 | } |
130 | buffer[*length] = '\0'; |
131 | } |
132 | |
133 | |
134 | // The procedure starts generating digits from the left to the right and stops |
135 | // when the generated digits yield the shortest decimal representation of v. A |
136 | // decimal representation of v is a number lying closer to v than to any other |
137 | // double, so it converts to v when read. |
138 | // |
139 | // This is true if d, the decimal representation, is between m- and m+, the |
140 | // upper and lower boundaries. d must be strictly between them if !is_even. |
141 | // m- := (numerator - delta_minus) / denominator |
142 | // m+ := (numerator + delta_plus) / denominator |
143 | // |
144 | // Precondition: 0 <= (numerator+delta_plus) / denominator < 10. |
145 | // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit |
146 | // will be produced. This should be the standard precondition. |
147 | static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
148 | Bignum* delta_minus, Bignum* delta_plus, |
149 | bool is_even, |
150 | Vector<char> buffer, int* length) { |
151 | // Small optimization: if delta_minus and delta_plus are the same just reuse |
152 | // one of the two bignums. |
153 | if (Bignum::Equal(*delta_minus, *delta_plus)) { |
154 | delta_plus = delta_minus; |
155 | } |
156 | *length = 0; |
157 | while (true) { |
158 | uint16_t digit; |
159 | digit = numerator->DivideModuloIntBignum(*denominator); |
160 | DCHECK_LE(digit, 9); // digit is a uint16_t and therefore always positive. |
161 | // digit = numerator / denominator (integer division). |
162 | // numerator = numerator % denominator. |
163 | buffer[(*length)++] = digit + '0'; |
164 | |
165 | // Can we stop already? |
166 | // If the remainder of the division is less than the distance to the lower |
167 | // boundary we can stop. In this case we simply round down (discarding the |
168 | // remainder). |
169 | // Similarly we test if we can round up (using the upper boundary). |
170 | bool in_delta_room_minus; |
171 | bool in_delta_room_plus; |
172 | if (is_even) { |
173 | in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); |
174 | } else { |
175 | in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); |
176 | } |
177 | if (is_even) { |
178 | in_delta_room_plus = |
179 | Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; |
180 | } else { |
181 | in_delta_room_plus = |
182 | Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; |
183 | } |
184 | if (!in_delta_room_minus && !in_delta_room_plus) { |
185 | // Prepare for next iteration. |
186 | numerator->Times10(); |
187 | delta_minus->Times10(); |
188 | // We optimized delta_plus to be equal to delta_minus (if they share the |
189 | // same value). So don't multiply delta_plus if they point to the same |
190 | // object. |
191 | if (delta_minus != delta_plus) { |
192 | delta_plus->Times10(); |
193 | } |
194 | } else if (in_delta_room_minus && in_delta_room_plus) { |
195 | // Let's see if 2*numerator < denominator. |
196 | // If yes, then the next digit would be < 5 and we can round down. |
197 | int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); |
198 | if (compare < 0) { |
199 | // Remaining digits are less than .5. -> Round down (== do nothing). |
200 | } else if (compare > 0) { |
201 | // Remaining digits are more than .5 of denominator. -> Round up. |
202 | // Note that the last digit could not be a '9' as otherwise the whole |
203 | // loop would have stopped earlier. |
204 | // We still have an assert here in case the preconditions were not |
205 | // satisfied. |
206 | DCHECK_NE(buffer[(*length) - 1], '9'); |
207 | buffer[(*length) - 1]++; |
208 | } else { |
209 | // Halfway case. |
210 | // TODO(floitsch): need a way to solve half-way cases. |
211 | // For now let's round towards even (since this is what Gay seems to |
212 | // do). |
213 | |
214 | if ((buffer[(*length) - 1] - '0') % 2 == 0) { |
215 | // Round down => Do nothing. |
216 | } else { |
217 | DCHECK_NE(buffer[(*length) - 1], '9'); |
218 | buffer[(*length) - 1]++; |
219 | } |
220 | } |
221 | return; |
222 | } else if (in_delta_room_minus) { |
223 | // Round down (== do nothing). |
224 | return; |
225 | } else { // in_delta_room_plus |
226 | // Round up. |
227 | // Note again that the last digit could not be '9' since this would have |
228 | // stopped the loop earlier. |
229 | // We still have an DCHECK here, in case the preconditions were not |
230 | // satisfied. |
231 | DCHECK_NE(buffer[(*length) - 1], '9'); |
232 | buffer[(*length) - 1]++; |
233 | return; |
234 | } |
235 | } |
236 | } |
237 | |
238 | |
239 | // Let v = numerator / denominator < 10. |
240 | // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) |
241 | // from left to right. Once 'count' digits have been produced we decide wether |
242 | // to round up or down. Remainders of exactly .5 round upwards. Numbers such |
243 | // as 9.999999 propagate a carry all the way, and change the |
244 | // exponent (decimal_point), when rounding upwards. |
245 | static void GenerateCountedDigits(int count, int* decimal_point, |
246 | Bignum* numerator, Bignum* denominator, |
247 | Vector<char>(buffer), int* length) { |
248 | DCHECK_GE(count, 0); |
249 | for (int i = 0; i < count - 1; ++i) { |
250 | uint16_t digit; |
251 | digit = numerator->DivideModuloIntBignum(*denominator); |
252 | DCHECK_LE(digit, 9); // digit is a uint16_t and therefore always positive. |
253 | // digit = numerator / denominator (integer division). |
254 | // numerator = numerator % denominator. |
255 | buffer[i] = digit + '0'; |
256 | // Prepare for next iteration. |
257 | numerator->Times10(); |
258 | } |
259 | // Generate the last digit. |
260 | uint16_t digit; |
261 | digit = numerator->DivideModuloIntBignum(*denominator); |
262 | if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { |
263 | digit++; |
264 | } |
265 | buffer[count - 1] = digit + '0'; |
266 | // Correct bad digits (in case we had a sequence of '9's). Propagate the |
267 | // carry until we hat a non-'9' or til we reach the first digit. |
268 | for (int i = count - 1; i > 0; --i) { |
269 | if (buffer[i] != '0' + 10) break; |
270 | buffer[i] = '0'; |
271 | buffer[i - 1]++; |
272 | } |
273 | if (buffer[0] == '0' + 10) { |
274 | // Propagate a carry past the top place. |
275 | buffer[0] = '1'; |
276 | (*decimal_point)++; |
277 | } |
278 | *length = count; |
279 | } |
280 | |
281 | |
282 | // Generates 'requested_digits' after the decimal point. It might omit |
283 | // trailing '0's. If the input number is too small then no digits at all are |
284 | // generated (ex.: 2 fixed digits for 0.00001). |
285 | // |
286 | // Input verifies: 1 <= (numerator + delta) / denominator < 10. |
287 | static void BignumToFixed(int requested_digits, int* decimal_point, |
288 | Bignum* numerator, Bignum* denominator, |
289 | Vector<char>(buffer), int* length) { |
290 | // Note that we have to look at more than just the requested_digits, since |
291 | // a number could be rounded up. Example: v=0.5 with requested_digits=0. |
292 | // Even though the power of v equals 0 we can't just stop here. |
293 | if (-(*decimal_point) > requested_digits) { |
294 | // The number is definitively too small. |
295 | // Ex: 0.001 with requested_digits == 1. |
296 | // Set decimal-point to -requested_digits. This is what Gay does. |
297 | // Note that it should not have any effect anyways since the string is |
298 | // empty. |
299 | *decimal_point = -requested_digits; |
300 | *length = 0; |
301 | return; |
302 | } else if (-(*decimal_point) == requested_digits) { |
303 | // We only need to verify if the number rounds down or up. |
304 | // Ex: 0.04 and 0.06 with requested_digits == 1. |
305 | DCHECK(*decimal_point == -requested_digits); |
306 | // Initially the fraction lies in range (1, 10]. Multiply the denominator |
307 | // by 10 so that we can compare more easily. |
308 | denominator->Times10(); |
309 | if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { |
310 | // If the fraction is >= 0.5 then we have to include the rounded |
311 | // digit. |
312 | buffer[0] = '1'; |
313 | *length = 1; |
314 | (*decimal_point)++; |
315 | } else { |
316 | // Note that we caught most of similar cases earlier. |
317 | *length = 0; |
318 | } |
319 | return; |
320 | } else { |
321 | // The requested digits correspond to the digits after the point. |
322 | // The variable 'needed_digits' includes the digits before the point. |
323 | int needed_digits = (*decimal_point) + requested_digits; |
324 | GenerateCountedDigits(needed_digits, decimal_point, |
325 | numerator, denominator, |
326 | buffer, length); |
327 | } |
328 | } |
329 | |
330 | |
331 | // Returns an estimation of k such that 10^(k-1) <= v < 10^k where |
332 | // v = f * 2^exponent and 2^52 <= f < 2^53. |
333 | // v is hence a normalized double with the given exponent. The output is an |
334 | // approximation for the exponent of the decimal approimation .digits * 10^k. |
335 | // |
336 | // The result might undershoot by 1 in which case 10^k <= v < 10^k+1. |
337 | // Note: this property holds for v's upper boundary m+ too. |
338 | // 10^k <= m+ < 10^k+1. |
339 | // (see explanation below). |
340 | // |
341 | // Examples: |
342 | // EstimatePower(0) => 16 |
343 | // EstimatePower(-52) => 0 |
344 | // |
345 | // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. |
346 | static int EstimatePower(int exponent) { |
347 | // This function estimates log10 of v where v = f*2^e (with e == exponent). |
348 | // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). |
349 | // Note that f is bounded by its container size. Let p = 53 (the double's |
350 | // significand size). Then 2^(p-1) <= f < 2^p. |
351 | // |
352 | // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close |
353 | // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). |
354 | // The computed number undershoots by less than 0.631 (when we compute log3 |
355 | // and not log10). |
356 | // |
357 | // Optimization: since we only need an approximated result this computation |
358 | // can be performed on 64 bit integers. On x86/x64 architecture the speedup is |
359 | // not really measurable, though. |
360 | // |
361 | // Since we want to avoid overshooting we decrement by 1e10 so that |
362 | // floating-point imprecisions don't affect us. |
363 | // |
364 | // Explanation for v's boundary m+: the computation takes advantage of |
365 | // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement |
366 | // (even for denormals where the delta can be much more important). |
367 | |
368 | const double k1Log10 = 0.30102999566398114; // 1/lg(10) |
369 | |
370 | // For doubles len(f) == 53 (don't forget the hidden bit). |
371 | const int kSignificandSize = 53; |
372 | double estimate = |
373 | std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); |
374 | return static_cast<int>(estimate); |
375 | } |
376 | |
377 | |
378 | // See comments for InitialScaledStartValues. |
379 | static void InitialScaledStartValuesPositiveExponent( |
380 | double v, int estimated_power, bool need_boundary_deltas, |
381 | Bignum* numerator, Bignum* denominator, |
382 | Bignum* delta_minus, Bignum* delta_plus) { |
383 | // A positive exponent implies a positive power. |
384 | DCHECK_GE(estimated_power, 0); |
385 | // Since the estimated_power is positive we simply multiply the denominator |
386 | // by 10^estimated_power. |
387 | |
388 | // numerator = v. |
389 | numerator->AssignUInt64(Double(v).Significand()); |
390 | numerator->ShiftLeft(Double(v).Exponent()); |
391 | // denominator = 10^estimated_power. |
392 | denominator->AssignPowerUInt16(10, estimated_power); |
393 | |
394 | if (need_boundary_deltas) { |
395 | // Introduce a common denominator so that the deltas to the boundaries are |
396 | // integers. |
397 | denominator->ShiftLeft(1); |
398 | numerator->ShiftLeft(1); |
399 | // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common |
400 | // denominator (of 2) delta_plus equals 2^e. |
401 | delta_plus->AssignUInt16(1); |
402 | delta_plus->ShiftLeft(Double(v).Exponent()); |
403 | // Same for delta_minus (with adjustments below if f == 2^p-1). |
404 | delta_minus->AssignUInt16(1); |
405 | delta_minus->ShiftLeft(Double(v).Exponent()); |
406 | |
407 | // If the significand (without the hidden bit) is 0, then the lower |
408 | // boundary is closer than just half a ulp (unit in the last place). |
409 | // There is only one exception: if the next lower number is a denormal then |
410 | // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we |
411 | // have to test it in the other function where exponent < 0). |
412 | uint64_t v_bits = Double(v).AsUint64(); |
413 | if ((v_bits & Double::kSignificandMask) == 0) { |
414 | // The lower boundary is closer at half the distance of "normal" numbers. |
415 | // Increase the common denominator and adapt all but the delta_minus. |
416 | denominator->ShiftLeft(1); // *2 |
417 | numerator->ShiftLeft(1); // *2 |
418 | delta_plus->ShiftLeft(1); // *2 |
419 | } |
420 | } |
421 | } |
422 | |
423 | |
424 | // See comments for InitialScaledStartValues |
425 | static void InitialScaledStartValuesNegativeExponentPositivePower( |
426 | double v, int estimated_power, bool need_boundary_deltas, |
427 | Bignum* numerator, Bignum* denominator, |
428 | Bignum* delta_minus, Bignum* delta_plus) { |
429 | uint64_t significand = Double(v).Significand(); |
430 | int exponent = Double(v).Exponent(); |
431 | // v = f * 2^e with e < 0, and with estimated_power >= 0. |
432 | // This means that e is close to 0 (have a look at how estimated_power is |
433 | // computed). |
434 | |
435 | // numerator = significand |
436 | // since v = significand * 2^exponent this is equivalent to |
437 | // numerator = v * / 2^-exponent |
438 | numerator->AssignUInt64(significand); |
439 | // denominator = 10^estimated_power * 2^-exponent (with exponent < 0) |
440 | denominator->AssignPowerUInt16(10, estimated_power); |
441 | denominator->ShiftLeft(-exponent); |
442 | |
443 | if (need_boundary_deltas) { |
444 | // Introduce a common denominator so that the deltas to the boundaries are |
445 | // integers. |
446 | denominator->ShiftLeft(1); |
447 | numerator->ShiftLeft(1); |
448 | // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common |
449 | // denominator (of 2) delta_plus equals 2^e. |
450 | // Given that the denominator already includes v's exponent the distance |
451 | // to the boundaries is simply 1. |
452 | delta_plus->AssignUInt16(1); |
453 | // Same for delta_minus (with adjustments below if f == 2^p-1). |
454 | delta_minus->AssignUInt16(1); |
455 | |
456 | // If the significand (without the hidden bit) is 0, then the lower |
457 | // boundary is closer than just one ulp (unit in the last place). |
458 | // There is only one exception: if the next lower number is a denormal |
459 | // then the distance is 1 ulp. Since the exponent is close to zero |
460 | // (otherwise estimated_power would have been negative) this cannot happen |
461 | // here either. |
462 | uint64_t v_bits = Double(v).AsUint64(); |
463 | if ((v_bits & Double::kSignificandMask) == 0) { |
464 | // The lower boundary is closer at half the distance of "normal" numbers. |
465 | // Increase the denominator and adapt all but the delta_minus. |
466 | denominator->ShiftLeft(1); // *2 |
467 | numerator->ShiftLeft(1); // *2 |
468 | delta_plus->ShiftLeft(1); // *2 |
469 | } |
470 | } |
471 | } |
472 | |
473 | |
474 | // See comments for InitialScaledStartValues |
475 | static void InitialScaledStartValuesNegativeExponentNegativePower( |
476 | double v, int estimated_power, bool need_boundary_deltas, |
477 | Bignum* numerator, Bignum* denominator, |
478 | Bignum* delta_minus, Bignum* delta_plus) { |
479 | const uint64_t kMinimalNormalizedExponent = |
480 | V8_2PART_UINT64_C(0x00100000, 00000000); |
481 | uint64_t significand = Double(v).Significand(); |
482 | int exponent = Double(v).Exponent(); |
483 | // Instead of multiplying the denominator with 10^estimated_power we |
484 | // multiply all values (numerator and deltas) by 10^-estimated_power. |
485 | |
486 | // Use numerator as temporary container for power_ten. |
487 | Bignum* power_ten = numerator; |
488 | power_ten->AssignPowerUInt16(10, -estimated_power); |
489 | |
490 | if (need_boundary_deltas) { |
491 | // Since power_ten == numerator we must make a copy of 10^estimated_power |
492 | // before we complete the computation of the numerator. |
493 | // delta_plus = delta_minus = 10^estimated_power |
494 | delta_plus->AssignBignum(*power_ten); |
495 | delta_minus->AssignBignum(*power_ten); |
496 | } |
497 | |
498 | // numerator = significand * 2 * 10^-estimated_power |
499 | // since v = significand * 2^exponent this is equivalent to |
500 | // numerator = v * 10^-estimated_power * 2 * 2^-exponent. |
501 | // Remember: numerator has been abused as power_ten. So no need to assign it |
502 | // to itself. |
503 | DCHECK(numerator == power_ten); |
504 | numerator->MultiplyByUInt64(significand); |
505 | |
506 | // denominator = 2 * 2^-exponent with exponent < 0. |
507 | denominator->AssignUInt16(1); |
508 | denominator->ShiftLeft(-exponent); |
509 | |
510 | if (need_boundary_deltas) { |
511 | // Introduce a common denominator so that the deltas to the boundaries are |
512 | // integers. |
513 | numerator->ShiftLeft(1); |
514 | denominator->ShiftLeft(1); |
515 | // With this shift the boundaries have their correct value, since |
516 | // delta_plus = 10^-estimated_power, and |
517 | // delta_minus = 10^-estimated_power. |
518 | // These assignments have been done earlier. |
519 | |
520 | // The special case where the lower boundary is twice as close. |
521 | // This time we have to look out for the exception too. |
522 | uint64_t v_bits = Double(v).AsUint64(); |
523 | if ((v_bits & Double::kSignificandMask) == 0 && |
524 | // The only exception where a significand == 0 has its boundaries at |
525 | // "normal" distances: |
526 | (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) { |
527 | numerator->ShiftLeft(1); // *2 |
528 | denominator->ShiftLeft(1); // *2 |
529 | delta_plus->ShiftLeft(1); // *2 |
530 | } |
531 | } |
532 | } |
533 | |
534 | |
535 | // Let v = significand * 2^exponent. |
536 | // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator |
537 | // and denominator. The functions GenerateShortestDigits and |
538 | // GenerateCountedDigits will then convert this ratio to its decimal |
539 | // representation d, with the required accuracy. |
540 | // Then d * 10^estimated_power is the representation of v. |
541 | // (Note: the fraction and the estimated_power might get adjusted before |
542 | // generating the decimal representation.) |
543 | // |
544 | // The initial start values consist of: |
545 | // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. |
546 | // - a scaled (common) denominator. |
547 | // optionally (used by GenerateShortestDigits to decide if it has the shortest |
548 | // decimal converting back to v): |
549 | // - v - m-: the distance to the lower boundary. |
550 | // - m+ - v: the distance to the upper boundary. |
551 | // |
552 | // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator. |
553 | // |
554 | // Let ep == estimated_power, then the returned values will satisfy: |
555 | // v / 10^ep = numerator / denominator. |
556 | // v's boundarys m- and m+: |
557 | // m- / 10^ep == v / 10^ep - delta_minus / denominator |
558 | // m+ / 10^ep == v / 10^ep + delta_plus / denominator |
559 | // Or in other words: |
560 | // m- == v - delta_minus * 10^ep / denominator; |
561 | // m+ == v + delta_plus * 10^ep / denominator; |
562 | // |
563 | // Since 10^(k-1) <= v < 10^k (with k == estimated_power) |
564 | // or 10^k <= v < 10^(k+1) |
565 | // we then have 0.1 <= numerator/denominator < 1 |
566 | // or 1 <= numerator/denominator < 10 |
567 | // |
568 | // It is then easy to kickstart the digit-generation routine. |
569 | // |
570 | // The boundary-deltas are only filled if need_boundary_deltas is set. |
571 | static void InitialScaledStartValues(double v, |
572 | int estimated_power, |
573 | bool need_boundary_deltas, |
574 | Bignum* numerator, |
575 | Bignum* denominator, |
576 | Bignum* delta_minus, |
577 | Bignum* delta_plus) { |
578 | if (Double(v).Exponent() >= 0) { |
579 | InitialScaledStartValuesPositiveExponent( |
580 | v, estimated_power, need_boundary_deltas, |
581 | numerator, denominator, delta_minus, delta_plus); |
582 | } else if (estimated_power >= 0) { |
583 | InitialScaledStartValuesNegativeExponentPositivePower( |
584 | v, estimated_power, need_boundary_deltas, |
585 | numerator, denominator, delta_minus, delta_plus); |
586 | } else { |
587 | InitialScaledStartValuesNegativeExponentNegativePower( |
588 | v, estimated_power, need_boundary_deltas, |
589 | numerator, denominator, delta_minus, delta_plus); |
590 | } |
591 | } |
592 | |
593 | |
594 | // This routine multiplies numerator/denominator so that its values lies in the |
595 | // range 1-10. That is after a call to this function we have: |
596 | // 1 <= (numerator + delta_plus) /denominator < 10. |
597 | // Let numerator the input before modification and numerator' the argument |
598 | // after modification, then the output-parameter decimal_point is such that |
599 | // numerator / denominator * 10^estimated_power == |
600 | // numerator' / denominator' * 10^(decimal_point - 1) |
601 | // In some cases estimated_power was too low, and this is already the case. We |
602 | // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == |
603 | // estimated_power) but do not touch the numerator or denominator. |
604 | // Otherwise the routine multiplies the numerator and the deltas by 10. |
605 | static void FixupMultiply10(int estimated_power, bool is_even, |
606 | int* decimal_point, |
607 | Bignum* numerator, Bignum* denominator, |
608 | Bignum* delta_minus, Bignum* delta_plus) { |
609 | bool in_range; |
610 | if (is_even) { |
611 | // For IEEE doubles half-way cases (in decimal system numbers ending with 5) |
612 | // are rounded to the closest floating-point number with even significand. |
613 | in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; |
614 | } else { |
615 | in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; |
616 | } |
617 | if (in_range) { |
618 | // Since numerator + delta_plus >= denominator we already have |
619 | // 1 <= numerator/denominator < 10. Simply update the estimated_power. |
620 | *decimal_point = estimated_power + 1; |
621 | } else { |
622 | *decimal_point = estimated_power; |
623 | numerator->Times10(); |
624 | if (Bignum::Equal(*delta_minus, *delta_plus)) { |
625 | delta_minus->Times10(); |
626 | delta_plus->AssignBignum(*delta_minus); |
627 | } else { |
628 | delta_minus->Times10(); |
629 | delta_plus->Times10(); |
630 | } |
631 | } |
632 | } |
633 | |
634 | } // namespace internal |
635 | } // namespace v8 |
636 | |